Skip to content
main
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 

6001CEM Project

This repository contains the created neural networks for my 6001CEM Final Year Project.

The project was conducted to answer the research question: To what extent can deep learning algorithm based neural networks identify the presence of Alzheimer’s Disease from patient MRI scans?

The dataset used can be found at: https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset

This project involved creating neural networks that would detect the presence of Alzheimer's Disease (AD) from patient MRI scans (binary classification - accuracy score is based on a yes/no answer as to whether the neural network detects the presence of AD) and networks that would detect the severity of AD from a patient's MRI scan, if present (4 class classification - accuracy score is based on the neural network classifying the patient's MRI scans into 1 of 4 distinct categories).

There a total of 6 neural networks (there are technically 3 but were split into 6 - binary and multi-class classification - so they would run faster):

  • 'TensorFlow4Class' - Neural network created using TensorFlow, provides an accuracy score for 4 class classification.

  • 'TensorFlowBinary' - Neural network created using TensorFlow, provides an accuracy score for binary classification.

  • 'ResNet4Class' - Neural network created using PyTorch and a pretrained ResNet model, provides an accuracy score for 4 class classification.

  • 'ResNetBinary' - Neural network created using PyTorch and a pretrained ResNet model, provides an accuracy score for binary classification.

  • 'PyTorchBinary' - Neural network created using PyTorch, provides an accuracy score for binary classification.

  • 'PyTorch4Class' - Neural network created using PyTorch, provides an accuracy score for 4 class classification.

There are 4 datasets present:

  • 'clean_dataset' - Used in 'TensorFlow4Class'. This dataset is the original and contains 4 classes ('Non Demented', 'Moderate Demented', 'Mild Demented', 'Very Mild Demented'), obtained from: https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset.

  • 'clean_dataset_binary' - Used in 'TensorFlowBinary'. Same as the original dataset, except the images are categorised into two folders ('Demented' and 'Non Demented').

  • 'clean_dataset_split' - Used in 'PyTorch4Class' and 'ResNet4Class', same as the original dataset but images are split into 'train' and 'test' folders at a split of 75/25 respectively; the original 4 classes remain.

  • 'clean_dataset_split_binary' - Used in 'PyTorchBinary' and 'ResNetBinary', images are categorised into 'train' and 'test' folders at a split of 75/25; images are also categorised into 'Demented' and 'Non Demented' within these folders.

About

No description, website, or topics provided.

Resources

Releases

No releases published