If there are any symbols or terminology you do not recognize then please let us know.

(1) Give the truth table for the following propositions

Expression	Meaning
$a \wedge b$	a and b
$a \lor b$	$a ext{ or } b$
$a \oplus b$	$a \operatorname{xor} b$
$\neg a$ (or \bar{a})	$\operatorname{not} a$
$a \implies b$	a implies b , or: if a then b
$a \iff b$	a and b are equivalent, or: " a if and only if b "

It is usual to apply these "bit-wise" to the bits of integers, e.g. $0011 \oplus 0101 = 0110$.

Solution

a	$\neg a$
0	1
1	0

a	b	$a \wedge b$	$a \lor b$	$a \oplus b$	$a \implies b$	$a \iff b$
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	0
1	1	1	1	0	1	1

Think of:

- \land as: multiplication.
- \vee as: addition.
- \oplus as: difference or distance.
- \implies as: "true \implies false" is not allowed.
- ⇐⇒ as: equality.

In particular, " $a \iff b$ " is equivalent to " $a \Rightarrow b$ and $b \Rightarrow a$." (" $b \Rightarrow a$ " can also be written as " $a \Leftarrow b$ "). Written formally,

$$a \iff b \equiv (a \Rightarrow b) \land (b \Rightarrow a)$$

This can be shown using a truth table as follows:

a	b	$a \implies b$	$b \implies a$	$(a \implies b) \land (b \implies a)$	$a \iff b$
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	1	1	1	1

We often use this latter fact to *prove* that two statements are equivalent. That is, if we want to prove that A and B are equivalent then we prove: $A \Longrightarrow B$ and $B \Longrightarrow A$.

1

- (2) Recall that:
 - $\mathbb{N} = \{1, 2, 3, \ldots\}$ is the set of **natural numbers**
 - $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ is the set of **integers**.

Consider the following set definitions

- $A = \{a \in \{1, 2, 3, 4\} \mid (a < 2) \lor (a > 3)\}$
- $B = \{a \in \mathbb{N} \mid a < 9\}$
- $C = \{a \in \mathbb{N} \mid a > 2 \land a < 7\}$
- $D = \{i \in \mathbb{Z} \mid i^2 \le 9\}$
- a) Give an explicit enumeration for each set, i.e. write down the elements in the form $\{x_1, x_2, \ldots\}$.
- b) What is the cardinality of each set?
- c) Which of these sets are subsets of at least one other set?

Solution

- a) $A = \{1, 4\}$
 - $B = \{1, 2, 3, 4, 5, 6, 7, 8\}$
 - $C = \{3, 4, 5, 6\}$
 - $D = \{-3, -2, -1, 0, 1, 2, 3\}$
- b) #A = 2

(#A is also denoted by |A|)

- #B = 8
- #C = 4
- #*D* = 7
- c) $A \subset B$ and $C \subset B$.

- (3) Write formal descriptions of the following sets.
 - a) The set containing all natural numbers that are less than 5.
 - b) The set containing all integers that are greater than 5.
 - c) The set containing the strings aa and ba.
 - d) The set containing the empty string.
 - e) The set containing nothing at all.
 - f) The set containing all the even integers.

Solution

- a) $\{1, 2, 3, 4\} = \{n \in \mathbb{N} \mid n < 5\}$
- b) $\{6,7,8,...\} = \{n \in \mathbb{N} \mid n > 5\} = \{n \in \mathbb{N} \mid n \geq 6\}$
- c) {aa,ba}
- d) $\{\varepsilon\}$
- **e**) ∅ = {}

The sets containing " \dots " are informal, and are only used to help with intuition.

(4) If the set A is $\{1,3,4\}$ and the set B is $\{3,5\}$, write down:

Expression	Meaning
$A \cup B$	union of A and B
$A \cap B$	intersection of A and B
A - B	$A \min B$
$A \times B$	Cartesian product of A and B : set of all possible pairs (a, b)
	where $a \in A$ and $b \in B$
2^B (or $\mathcal{P}(B)$)	power set of B : set of all subsets of B

Solution

- $A \cup B = \{1, 3, 4, 5\}$
- $A \cap B = \{3\}$
- $A B = \{1, 4\}$
- $A \times B = \{(1,3), (1,5), (3,3), (3,5), (4,3), (4,5)\}$
- $2^B = \{\emptyset, \{3\}, \{5\}, \{3, 5\}\}$

(5) Let X be the set $\{1, 2, 3, 4, 5\}$ and Y be the set $\{6, 7, 8, 9, 10\}$.

The *unary* function $f: X \to Y$ and the *binary* function $g: (X \times Y) \to Y$ are described in the following tables:

n	f(n)
1	6
2	7
3	6
4	7
5	6

g	6	7	8	9	10
1	10	10	10	10	10
2	7	8	9	10	6
3	7	7	8	8	9
4	9	8	7	6	10
5	6	6	6	6	6

- What are the *range* and *domain* of *f*?
- What are the *range* and *domain* of *g*?
- What is the value of f(2)?
- What is the value of g(2, 10)?
- What is the value of g(4, f(4))

Solution

$$f \colon \underbrace{X}_{\text{Domain}} \to \underbrace{Y}_{\text{Range}}$$

$$f \colon \underbrace{X}_{\text{Domain}} \to \underbrace{Y}_{\text{Range}} \qquad \qquad g \colon \underbrace{X \times Y}_{\text{Domain}} \to \underbrace{Y}_{\text{Range}}$$

- Range of f: Y. Domain of f: X.
- Range of g: Y. Domain of $g: X \times Y$.
- f(2) = 7 (through table lookup).

n	f(n)
1	6
2	7
3	6
4	7
5	6

• g(2,10) = 6 (through table lookup).

g	6	7	8	9	10
1	10	10	10	10	10
2	7	8	9	10	6
3	7	7	8	8	9
4	9	8	7	6	10
5	6	6	6	6	6

• g(4, f(4)) = g(4, 7) = 8.

n	f(n)
1	6
2	7
3	6
4	7
5	6

g	6	7	8	9	10
1	10	10	10	10	10
2	7	8	9	10	6
3	7	7	8	8	9
4	9	8	7	6	10
5	6	6	6	6	6

(6) Write a formal description of the following graph.

Solution

G = (V, E) where $V = \{1, 2, 3, 4, 5, 6\}$ is the set of vertices, and the set of edges is

$$E = \{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\}$$

N.B. This graph is undirected, so technically the edges should be represented as sets rather than pairs (because the order is not important, e.g. the first edge should be $\{1,4\}$ rather than (1,4)) but we will tolerate this.

(7) Draw the (undirected) graph G = (V, E), where

$$\begin{array}{lcl} V & = & \{1,2,3,4,5\} \\ E & = & \{(1,2),(1,4),(2,3),(2,4),(3,5),(1,5)\} \end{array}$$

- a) Is the graph connected?
- b) What about the graph G' = (V', E'), where $V' = \{1, 2, 3, 4\}$ and $E' = \{(1, 3), (2, 4)\}$?

(8) Draw the graph G=(V,E), where $V=\{1,\ldots,5\}$ and

$$E = \{(a, b) \mid a, b \in V \land (a < b < a + 3)\}.$$

Solution

We need to find the pairs (a,b) that satisfy a < b < a+3. We can do this in table form:

a	b	Pairs (a, b)
1	2,3	(1,2),(1,3)
2	3,4	(2,3),(2,4)
3	4,5	(3,4),(3,5)
4	5	(4,5)
5		

e.g. when a=1 we get 1 < b < 4, so $b \in \{2,3\}$, which gives us two pairs: (1,2) and (1,3).

(9) The "Icosian Game" is a 19th-century puzzle invented by the Irish mathematician Sir William Hamilton (1805–1865). The game was played on a wooden board with holes representing major world cities and grooves representing connections between them (see figure below).

The object is to find a cycle that would pass through all the cities exactly once before returning to the starting point. Can you find such routes?

Solution

One possible solution is:

Martin Gardner, a popular mathematics writer, wrote:

On a dodecahedron with unmarked vertices there are only two Hamiltonian circuits that are different in form, one a mirror image of the other. But if the corners are labeled, and we consider each route "different" if it passes through the 20 vertices in a different order, there are 30 separate circuits, not counting reverse runs of these same sequences.