Recall the problems:

$$
\text { SAT }=\{\langle\phi\rangle \mid \phi \text { has at least one satisfying assignments }\}
$$

and

$$
\text { DOUBLE-SAT }=\{\langle\phi\rangle \mid \phi \text { has at least two satisfying assignments }\}
$$

(1) For the following Boolean formulae, count how many satisfying assignments they have, then decide if they are in SAT and DOUBLE-SAT?

- $\phi_{1}=x \wedge(y \vee \bar{x}) \wedge(z \vee \bar{y})$
- $\phi_{2}=(x \vee y) \wedge((\overline{x \vee z}) \vee(\bar{z} \wedge \bar{y}))$
- $\phi_{3}=(\bar{x} \vee y \vee z) \wedge(x \vee \bar{y} \vee z) \wedge(x \vee y \vee \bar{z})$
(2) Define

TRIPLE-SAT $=\{\langle\phi\rangle \mid \phi$ has at least 3 satisfying assignments $\}$

Complete the proof below to show that TRIPLE-SAT is NP-complete.

TRIPLE-SAT is NP-complete

We need to show that TRIPLE-SAT $\in \mathbf{N P} \square$ SAT \leq_{P} TRIPLE-SAT.

1/2 TRIPLE-SAT $\in \mathbf{N P}:$

On input $\left\langle\phi\left(x_{1}, \ldots, x_{n}\right)\right\rangle$, non-deterministically assignments for the Boolean variables x_{1}, \ldots, x_{n}, and verify whether they all \qquad ϕ.
The verification step only costs $O(\square)$.

2/2 SAT \leq_{p} TRIPLE-SAT:

On input $\left\langle\phi\left(x_{1}, \ldots, x_{n}\right)\right\rangle$, introduce 2 new Boolean variables a and b, and output the formula:

$$
\Psi\left(x_{1}, \ldots, x_{n}, a, b\right)=\phi\left(x_{1}, \ldots, x_{n}\right) \wedge(a \vee b)
$$

- $(1 / 2)$ If $\langle\phi\rangle \in$ SAT then this means that ϕ has at least \qquad satisfying assignment, and therefore $\phi \wedge(a \vee b)$ has at least satisfying assignments because the added clause $(a \vee b)$ can be satisfied in 3 ways:

$$
(a, b) \in\{(1,0),(0,1), \square\} .
$$

So $\langle\Psi\rangle=\langle\phi \wedge(a \vee b)\rangle \in$ TRIPLE-SAT.

- $(2 / 2)$ If $\langle\phi\rangle \notin$ SAT then $\phi \wedge(a \vee b) \square$ have a satisfying assignment because

$$
0 \wedge 0=0 \quad \text { and } \quad 0 \wedge \square=0
$$

So $\langle\Psi\rangle=\langle\phi \wedge(a \vee b)\rangle \notin$ TRIPLE-SAT.
Therefore, SAT \leq_{P} TRIPLE-SAT, and hence TRIPLE-SAT is NP-complete.
(3) Let $\mathbb{N}=\{1,2,3, \ldots\}$ be the set of natural numbers, and define

$$
\mathbb{N}_{t}=\{n \in \mathbb{N} \mid n<t\} \quad\left(\text { i.e. } \mathbb{N}_{t}=\{1,2, \ldots, t-1\}\right)
$$

Consider the following restricted version of the Subset-Sum Problem (SSP)

$$
\begin{array}{ll}
\mathrm{SSP}=\{\langle\mathcal{S}, t\rangle \quad \mid & \mathcal{S} \subsetneq \mathbb{N}_{t} \text { is a finite set, and } t \in \mathbb{N} \text {, such that } \\
& \text { there is a subset of } \mathcal{S} \text { whose sum is } t\}
\end{array}
$$

Here the notation " $A \subsetneq B$ " means that $A \subset B$ but $A \neq B$.
SSP is NP-complete.
Define:

> DOUBLE-SSP $=\left\{\langle\mathcal{S}, t\rangle \mid \mathcal{S} \subset \mathbb{N}_{t}\right.$ is a finite set, and $t \in \mathbb{N}$, such that there are two distinct subsets of \mathcal{S} which both sum to $t\}$

Complete the proof below to show that DOUBLE-SSP \in NP-complete.

DOUBLE-SSP is NP-complete

$1 / 2$ DOUBLE-SSP $\in \mathbf{N P}$ because we can \square if 2 given subsets $\mathcal{T}_{1}, \mathcal{T}_{2}$ of \mathcal{S} sum to t and check that $\mathcal{T}_{1} \neq \mathcal{T}_{2}$ in time $O(\square)$, which is polynomial time.

2/2 SSP \leq_{P} DOUBLE-SSP.
Since $\mathcal{S} \subsetneq \mathbb{N}_{t}$ then $\mathcal{S} \square$ at least an element m from $\{1,2,3, \ldots, t-1\}$. Select such an m and build a DOUBLE-SSP instance $\left\langle\mathcal{S}^{\prime}, t\right\rangle$ where $\mathcal{S}^{\prime}=\mathcal{S} \cup$ $\{m, t-m\}$.
$\bullet(1 / 2)$ Showing that: $\langle\mathcal{S}, t\rangle \in \mathrm{SSP} \Longrightarrow\left\langle\mathcal{S}^{\prime}, t\right\rangle \square$ DOUBLE-SSP. Since $\langle\mathcal{S}, t\rangle \in \operatorname{SSP}$ then there is a subset $\mathcal{T} \subset \mathcal{S}$ which \square to t. A second solution is given by \qquad

- (2/2) Showing that: $\left\langle\mathcal{S}^{\prime}, t\right\rangle \in$ DOUBLE-SSP $\Longrightarrow\langle\mathcal{S}, t\rangle \in \square$.

If $\left\langle\mathcal{S}^{\prime}, t\right\rangle \in$ DOUBLE-SSP then there are two distinct subsets \mathcal{T} and \mathcal{U} of \mathcal{S}^{\prime} that both sum to t.
\mathcal{T} and \mathcal{U} cannot both be $\{m, t-m\}$ because they must be \qquad So one of them must be a \qquad of \mathcal{S}. So, $\langle\mathcal{S}, t\rangle \in$ SSP.
(4) Consider the following graph:

and recall that

$$
\text { CLIQUE }=\{\langle G, k\rangle \mid \text { The graph } G \text { has a } k \text {-clique }\}
$$

- What is the largest k for which this graph satisfies CLIQUE?
- In general, how many edges does a k-clique have (as a function of k)?
(5) A vertex cover of an undirected graph G is a subset of the vertices where every edge of G touches one of those vertices.

The VERTEX-COVER problem asks whether a graph contains a vertex cover of a specified size:

VERTEX-COVER $=\{\langle G, k\rangle \mid G$ is an undirected graph that has a k-vertex cover $\}$.

What is the smallest k for which the graph from the previous question satisfies VERTEX-COVER?
(6) Do the following graphs have Hamiltonian circuits?

(7) Let $x_{1}, x_{2}, \ldots, x_{n}$ be Boolean variables, and let ϕ be a Boolean formula written in 3 -cnf (Conjunctive Normal Form, like ϕ_{3} in the first excercise) given by

$$
\phi=c_{1} \wedge c_{2} \wedge \cdots \wedge c_{\ell},
$$

where each clause c_{m} has the form $\alpha \vee \beta \vee \gamma$, where each of α, β, γ is a literal: a variable x_{i} or its negation \bar{x}_{i}.

The 3SAT problem is NP-complete, and asks if a given 3-cnf formula is satifiable.
We showed in the lecture that the Subset-Sum Problem (SSP) is in P. Now, show that SSP is NP-complete by reducing 3SAT to it, i.e. show that

$$
3 \mathrm{SAT} \leq_{P} \mathrm{SSP}
$$

You may find it easier if you study the discussion at https://saravananthirumuruganathan. wordpress.com/2011/02/07/detailed-discussion-on-np-completeness-of-subset-sum/ then the proof given in the textbook.
(8) Prove that CLIQUE is NP-complete by reducing the VERTEX-COVER problem to CLIQUE. (VERTEX-COVER is NP-complete)

You can use the following reduction from VERTEX-COVER to CLIQUE:
Suppose we are given an instance $\langle G, k\rangle$ of VERTEX-COVER. Construct the instance $\left\langle G^{\prime}, n-k\right\rangle$ of CLIQUE, where n is the total number of nodes of G, and G^{\prime} is G with the set of edges complemented (i.e. G^{\prime} has an edge if and only if G does not have that edge).
(9) Given a graph G with an even number of vertices n, does G have an $n / 2$-clique?

Hint: Reduce CLIQUE to HALF-CLIQUE. You need to figure out how to add vertices to adjust the size of the largest clique depending on whether $k=n / 2$ or $k>n / 2$ or $k<n / 2$ (e.g., if $k=n / 2$, just produce G).
(10) Show that the class \mathbf{P} is closed under:

- Union.
- Concatenation.
- Complementation.

