

If there are any symbols or terminology you do not recognize then please let us know.

(1) Give the truth table for the following propositions

Expression	Meaning
$a \wedge b$	a and b
$a \vee b$	a or b
$a \oplus b$	a xor b
$\neg a$ (or \bar{a})	not a
$a \implies b$	a implies b , or: if a then b
$a \iff b$	a and b are equivalent, or: " a if and only if b "

It is usual to apply these "bit-wise" to the bits of integers, e.g. $0011 \oplus 0101 = 0110$.

Solution

		a	$\neg a$			
a	b	$a \wedge b$	$a \vee b$	$a \oplus b$	$a \implies b$	$a \iff b$
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	0
1	1	1	1	0	1	1

Think of:

- \wedge as: *multiplication*.
- \vee as: *addition*.
- \oplus as: *difference or distance*.
- \implies as: "*true \implies false*" is not allowed.
- \iff as: *equality*.

In particular, " $a \iff b$ " is equivalent to " $a \implies b$ and $b \implies a$." (" $b \implies a$ " can also be written as " $a \Leftarrow b$ "). Written formally,

$$a \iff b \equiv (a \implies b) \wedge (b \implies a)$$

This can be shown using a truth table as follows:

a	b	$a \implies b$	$b \implies a$	$(a \implies b) \wedge (b \implies a)$	$a \iff b$
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	1	1	1	1

We often use this latter fact to *prove* that two statements are equivalent. That is, if we want to prove that A and B are equivalent then we prove: $A \implies B$ and $B \implies A$.

(2) Recall that:

- $\mathbb{N} = \{1, 2, 3, \dots\}$ is the set of **natural numbers**
- $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ is the set of **integers**.

Consider the following set definitions

- $A = \{a \in \{1, 2, 3, 4\} \mid (a < 2) \vee (a > 3)\}$
- $B = \{a \in \mathbb{N} \mid a < 9\}$
- $C = \{a \in \mathbb{N} \mid a > 2 \wedge a < 7\}$
- $D = \{i \in \mathbb{Z} \mid i^2 \leq 9\}$

a) Give an explicit enumeration for each set, i.e. write down the elements in the form $\{x_1, x_2, \dots\}$.

b) What is the cardinality of each set?

c) Which of these sets are subsets of at least one other set?

Solution

a)

- $A = \{1, 4\}$
- $B = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- $C = \{3, 4, 5, 6\}$
- $D = \{-3, -2, -1, 0, 1, 2, 3\}$

b)

- $\#A = 2$ ($\#A$ is also denoted by $|A|$)
- $\#B = 8$
- $\#C = 4$
- $\#D = 7$

c) $A \subset B$ and $C \subset B$.

(3) Write formal descriptions of the following sets.

- a) The set containing all natural numbers that are less than 5.
- b) The set containing all integers that are greater than 5.
- c) The set containing the strings aa and ba.
- d) The set containing the empty string.
- e) The set containing nothing at all.
- f) The set containing all the even integers.

Solution

- a) $\{1, 2, 3, 4\} = \{n \in \mathbb{N} \mid n < 5\}$
- b) $\{6, 7, 8, \dots\} = \{n \in \mathbb{N} \mid n > 5\} = \{n \in \mathbb{N} \mid n \geq 6\}$
- c) $\{\text{aa}, \text{ba}\}$
- d) $\{\varepsilon\}$
- e) $\emptyset = \{\}$
- f) $\{\dots, -6, -4, -2, 0, 2, 4, 6, \dots\} = \{2k \mid k \in \mathbb{Z}\}$

The sets containing “...” are informal, and are only used to help with intuition.

(4) If the set A is $\{1, 3, 4\}$ and the set B is $\{3, 5\}$, write down:

Expression	Meaning
$A \cup B$	union of A and B
$A \cap B$	intersection of A and B
$A - B$	A minus B
$A \times B$	Cartesian product of A and B : set of all possible pairs (a, b) where $a \in A$ and $b \in B$
2^B (or $\mathcal{P}(B)$)	power set of B : set of all subsets of B

Solution

- $A \cup B = \{1, 3, 4, 5\}$
- $A \cap B = \{3\}$
- $A - B = \{1, 4\}$
- $A \times B = \{(1, 3), (1, 5), (3, 3), (3, 5), (4, 3), (4, 5)\}$
- $2^B = \{\emptyset, \{3\}, \{5\}, \{3, 5\}\}$

(5) Let X be the set $\{1, 2, 3, 4, 5\}$ and Y be the set $\{6, 7, 8, 9, 10\}$.

The *unary* function $f: X \rightarrow Y$ and the *binary* function $g: (X \times Y) \rightarrow Y$ are described in the following tables:

n	$f(n)$
1	6
2	7
3	6
4	7
5	6

g	6	7	8	9	10
1	10	10	10	10	10
2	7	8	9	10	6
3	7	7	8	8	9
4	9	8	7	6	10
5	6	6	6	6	6

- What are the *range* and *domain* of f ?
- What are the *range* and *domain* of g ?
- What is the value of $f(2)$?
- What is the value of $g(2, 10)$?
- What is the value of $g(4, f(4))$?

Solution

$$f: \underbrace{X}_{\text{Domain}} \rightarrow \underbrace{Y}_{\text{Range}}$$

$$g: \underbrace{X \times Y}_{\text{Domain}} \rightarrow \underbrace{Y}_{\text{Range}}$$

- Range of f : Y . Domain of f : X .
- Range of g : Y . Domain of g : $X \times Y$.
- $f(2) = 7$ (through table lookup).

n	$f(n)$
1	6
2	7
3	6
4	7
5	6

- $g(2, 10) = 6$ (through table lookup).

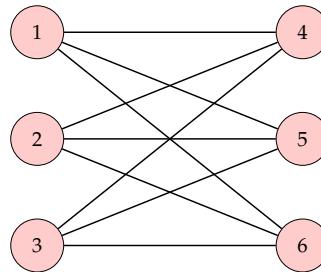
g	6	7	8	9	10
1	10	10	10	10	10
2	7	8	9	10	6
3	7	7	8	8	9
4	9	8	7	6	10
5	6	6	6	6	6

- $g(4, f(4)) = g(4, 7) = 8$.

n	$f(n)$
1	6
2	7
3	6
4	7
5	6

g	6	7	8	9	10
1	10	10	10	10	10
2	7	8	9	10	6
3	7	7	8	8	9
4	9	8	7	6	10
5	6	6	6	6	6

(6) Write a formal description of the following graph.



Solution

$G = (V, E)$ where $V = \{1, 2, 3, 4, 5, 6\}$ is the set of vertices, and the set of edges is

$$E = \{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)\}$$

N.B. This graph is undirected, so technically the edges should be represented as sets rather than pairs (because the order is not important, e.g. the first edge should be $\{1, 4\}$ rather than $(1, 4)$) but we will tolerate this.

(7) Draw the (undirected) graph $G = (V, E)$, where

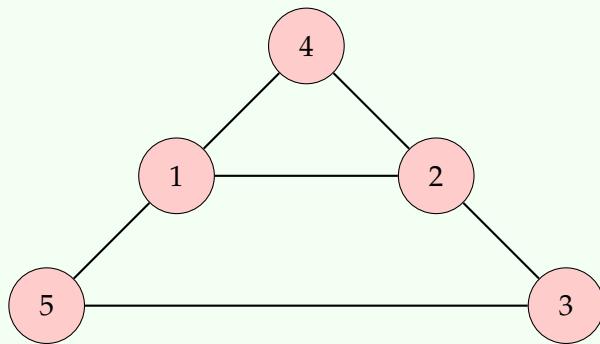
$$\begin{aligned} V &= \{1, 2, 3, 4, 5\} \\ E &= \{(1, 2), (1, 4), (2, 3), (2, 4), (3, 5), (1, 5)\} \end{aligned}$$

a) Is the graph connected?

b) What about the graph $G' = (V', E')$, where $V' = \{1, 2, 3, 4\}$ and $E' = \{(1, 3), (2, 4)\}$?

Solution

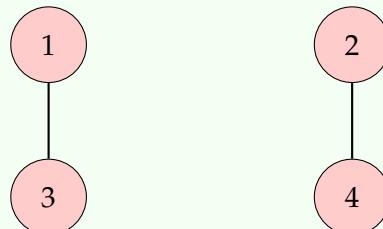
G :



G is connected.

G' :

(G' is pronounced "G prime")



G' is not connected.

(8) Draw the graph $G = (V, E)$, where $V = \{1, \dots, 5\}$ and

$$E = \{(a, b) \mid a, b \in V \wedge (a < b < a + 3)\}.$$

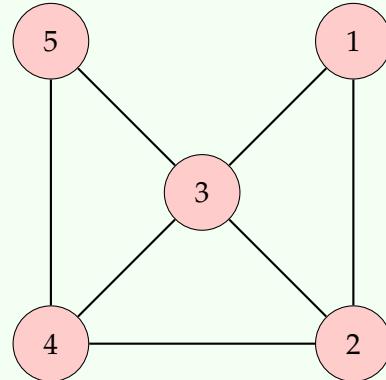
Solution

We need to find the pairs (a, b) that satisfy $a < b < a + 3$.

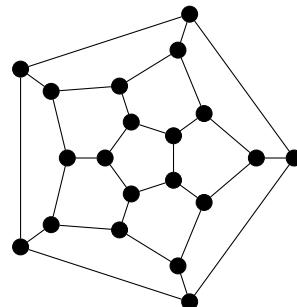
We can do this in table form:

a	b	Pairs (a, b)
1	2, 3	(1, 2), (1, 3)
2	3, 4	(2, 3), (2, 4)
3	4, 5	(3, 4), (3, 5)
4	5	(4, 5)
5		

e.g. when $a = 1$ we get $1 < b < 4$,
so $b \in \{2, 3\}$, which gives us two pairs:
(1, 2) and (1, 3).



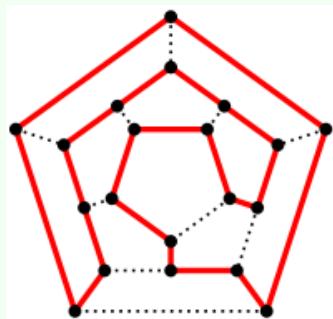
(9) The “Icosian Game” is a 19th-century puzzle invented by the Irish mathematician Sir William Hamilton (1805–1865). The game was played on a wooden board with holes representing major world cities and grooves representing connections between them (see figure below).



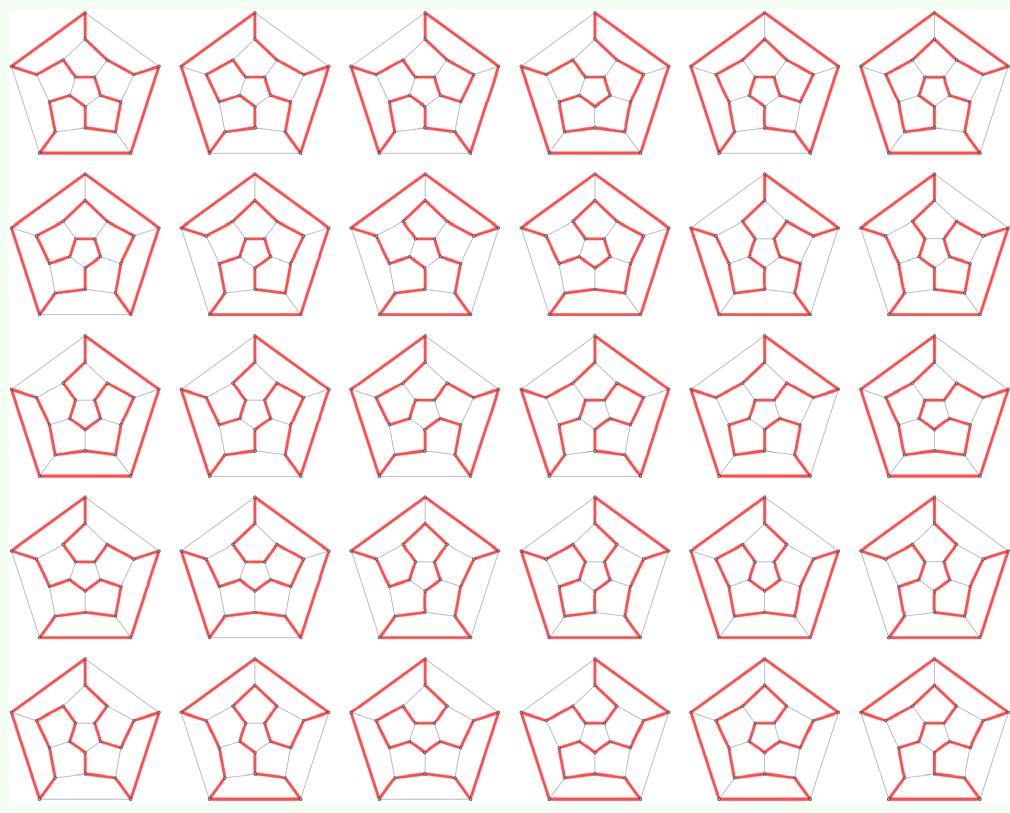
The object is to find a cycle that would pass through all the cities exactly once before returning to the starting point. Can you find such routes?

Solution

One possible solution is:



Here are the variations (see [this article on MathWorld](#)):



You may have noticed that these are “essentially” the same. This is called “symmetry.”

Martin Gardner, a popular mathematics author, [wrote](#):

On a dodecahedron with unmarked vertices there are only two Hamiltonian circuits that are different in form, one a mirror image of the other. But if the corners are labeled, and we consider each route “different” if it passes through the 20 vertices in a different order, there are 30 separate circuits, not counting reverse runs of these same sequences.

A perspective projection of a dodecahedron with a Hamilton cycle through its vertices ([Source](#)):

