

Space Complexity

Dr Kamal Bentahar

School of Science, Coventry University

Lecture 10

Review

Space
complexity

PSPACE & NSPACE

Example

Savitch
Theorem

PSPACE =
NSPACE

Venn diagram

Logarithmic
space

Encoding numbers

Complexity
Onion

Review

Space
complexity

PSPACE & NSPACE
Example

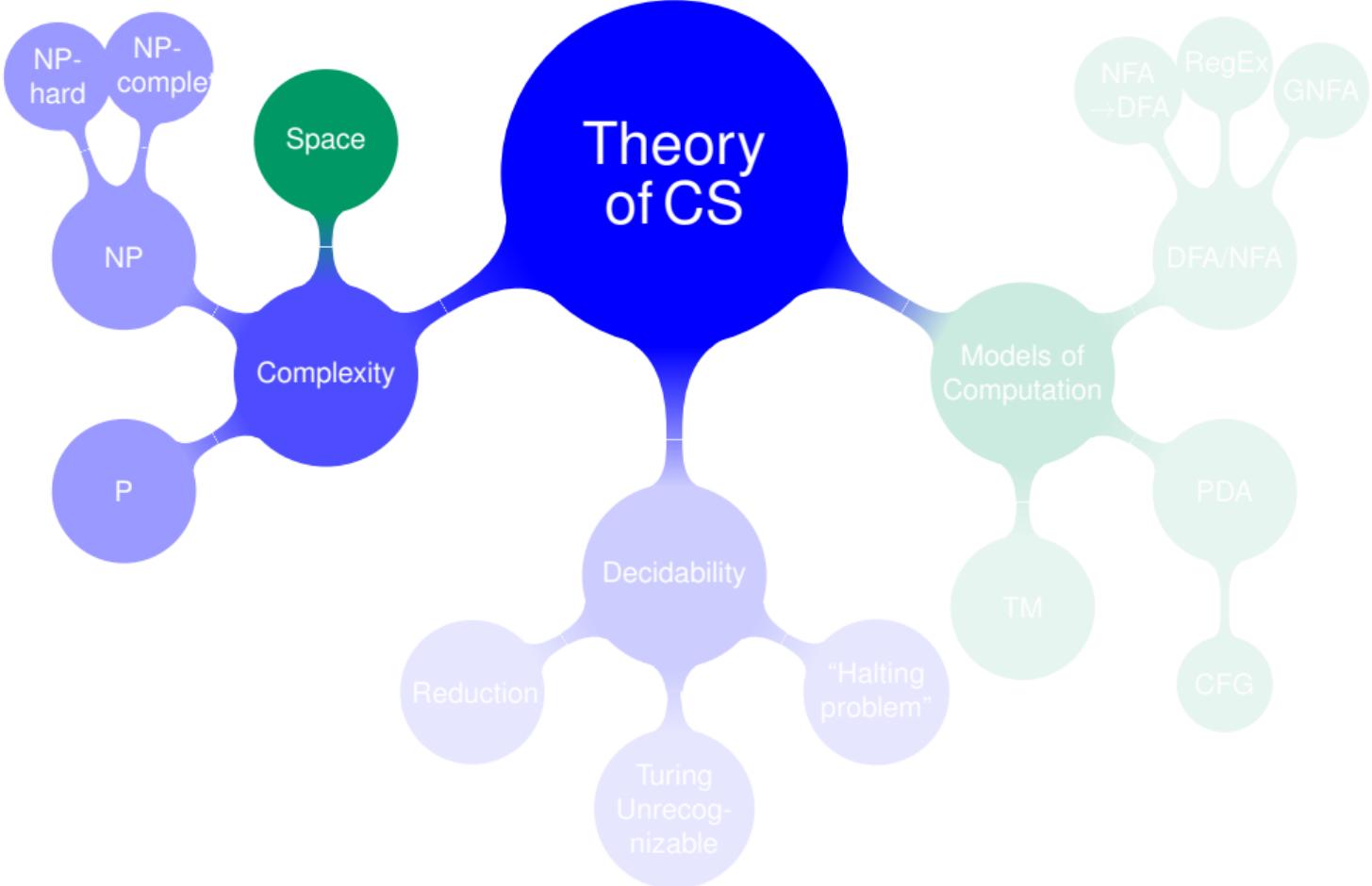
Savitch
Theorem

PSPACE =
NPSPACE
Venn diagram

Logarithmic
space
Encoding numbers

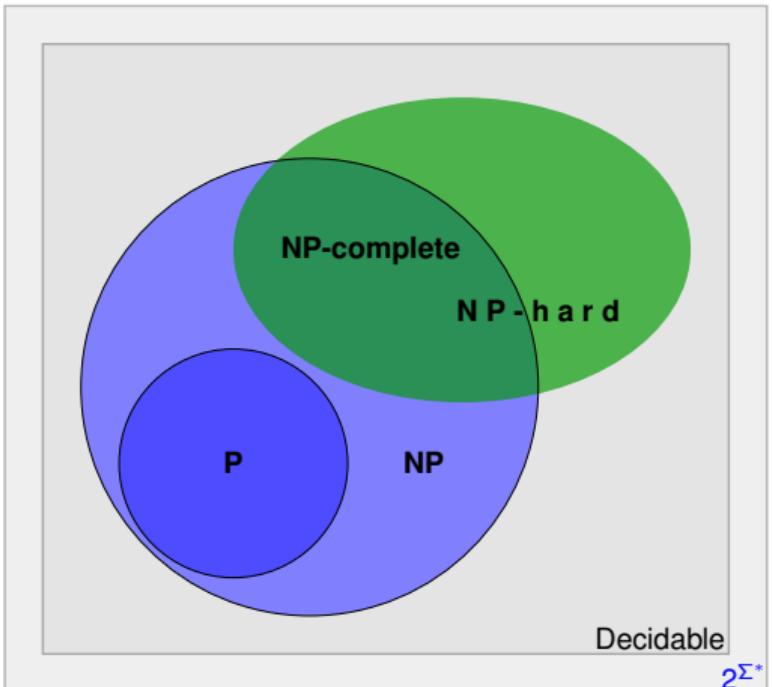
Complexity
Onion

Theory of CS



Last 2 lectures...

Space
Complexity



Review

Space
complexity

PSPACE & NSPACE

Example

Savitch
Theorem

PSPACE =
NSPACE

Venn diagram

Logarithmic
space

Encoding numbers

Complexity
Onion

Space complexity

We also want to measure the amount of **memory** used by a computation.

Space complexity

(TM that always halts)

The **space complexity** of a decider \mathcal{M} is the maximum number of tape cells $m(n)$ that \mathcal{M} scans on any input of length n .

We say that \mathcal{M} “**runs in space $m(n)$** ” if its space-complexity is $m(n)$.

If \mathcal{M} is non-deterministic then we measure the maximum used on any branch of its computation.

Space-complexity classes: SPACE and NSPACE

Let $m : \mathbb{N} \rightarrow \mathbb{R}^+$ be a function.

Definitions

$SPACE(m(n)) = \{L \mid L \text{ is a language decided by an } O(m(n)) \text{ space DTM}\}$

$NSPACE(m(n)) = \{L \mid L \text{ is a language decided by an } O(m(n)) \text{ space NDTM}\}$

- **DTM**: Deterministic Turing Machine.
- **NDTM**: Nondeterministic Turing Machine.

If $m(n)$ is polynomial, then we call:

- $SPACE(m(n))$: **Polynomial space** or **polyspace** for short.
- $NSPACE(m(n))$: **No-deterministic polyspace**.

Review

Space
complexity

PSPACE & NSPACE

Example

Savitch
Theorem

PSPACE =
NSPACE

Venn diagram

Logarithmic
space

Encoding numbers

Complexity
Onion

Example (Computing the space cost)

Consider the following decider for SAT:

On input $\langle \phi \rangle$, where ϕ is a Boolean formula with k variables x_1, \dots, x_k :

- 1 For each truth assignment of the variables x_1, \dots, x_k of ϕ :
- 2 Evaluate ϕ on the current assignment.
- 3 If ϕ ever evaluates to *true* then *accept*; otherwise *reject*.

Let us estimate the space cost:

- Each iteration can reuse the same memory.
- Storing the current truth assignment requires k tape cells.
- So the total space needed is only $O(k)$.

We need to find the total cost as a function of $n = |\langle \phi \rangle|$, the length of the input. Since we must have $k \leq n$, then space cost is $O(k) = O(n)$.

Review

Space
complexity

PSPACE & NSPACE

Example

Savitch
TheoremPSPACE =
NSPACE

Venn diagram

Logarithmic
space

Encoding numbers

Complexity
Onion

Savitch Theorem

Savitch's Theorem

For any function $m : \mathbb{N} \rightarrow \mathbb{R}^+$, where $m(n) \geq n$,

$$NSPACE(m(n)) \subseteq SPACE(m^2(n))$$

This is really surprising!

When simulating NDTMs using DTMs:

- **Time complexity** seems to increase exponentially...
- **Space complexity** increases quadratically only!

This is because we can **reuse** space, whereas we cannot reuse time!

Review

Space
complexity

PSPACE & NSPACE

Example

Savitch
TheoremPSPACE =
NSPACE

Venn diagram

Logarithmic
space

Encoding numbers

Complexity
Onion

PSPACE vs NPSPACE

Definitions

PSPACE: class of languages that are decidable in **polyspace** on a DTM

$$\mathbf{PSPACE} = \mathbf{SPACE}(1) \cup \mathbf{SPACE}(n) \cup \mathbf{SPACE}(n^2) \cup \dots$$

NPSPACE: class of languages that are decidable in **polyspace** on a NDTM

$$\mathbf{NPSPACE} = \mathbf{NSPACE}(1) \cup \mathbf{NSPACE}(n) \cup \mathbf{NSPACE}(n^2) \cup \dots$$

By Savitch theorem, we have the surprising result:

$$\mathbf{PSPACE} = \mathbf{NPSPACE}$$

Review

Space
complexity

PSPACE & NSPACE

Example

Savitch
TheoremPSPACE =
NPSPACE

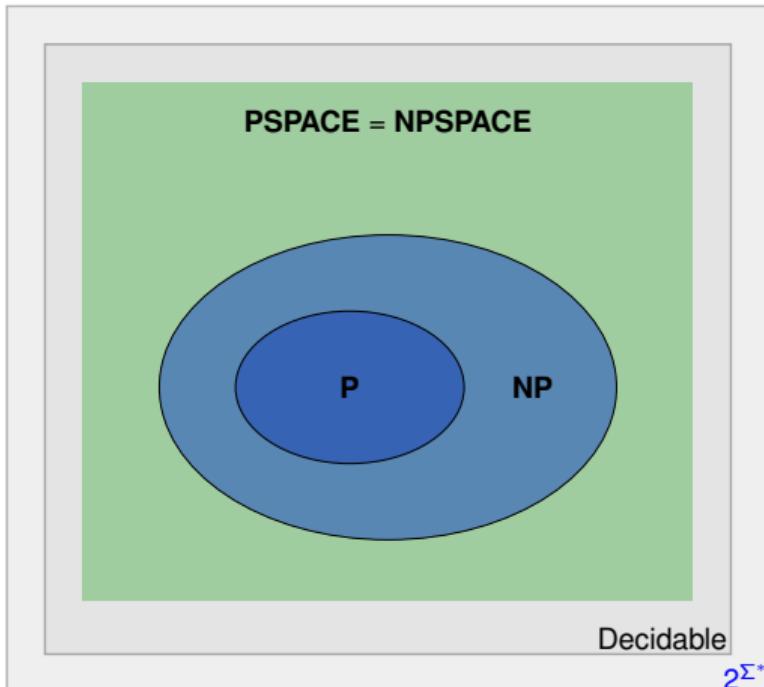
Venn diagram

Logarithmic
space

Encoding numbers

Complexity
Onion

$$P \subseteq NP \subseteq PSPACE$$



Review

Space
complexity

PSPACE & NSPACE

Example

Savitch
TheoremPSPACE =
NPSPACE

Venn diagram

Logarithmic
space

Encoding numbers

Complexity
Onion

Logarithmic space

In applications such as processing “big data” we really care about the “extra space” needed.

We model this scenario as follows:

We use a 2-tape TM:

- 1 The input is read-only on the first tape.
- 2 We measure the **extra space** used for working on the second tape.

We then define two **logarithmic space** complexity classes:

L: set of problems decidable in $O(\log n)$ space on a DTM.

NL: set of problems decidable in $O(\log n)$ space on a NDTM.

Review

Space complexity

PSPACE & NSPACE

Example

Savitch Theorem

PSPACE = NSPACE

Venn diagram

Logarithmic space

Encoding numbers

Complexity Onion

Encoding numbers

In general, given a number n , we can represent it in two ways:

- **Unary.** We would need n symbols. For example, $7_{10} = |||||$ unary.
- **Positional number system.** For example, $1000_{10} = 1111101000_2$.
Using base b costs about $\log_b n$ which is $\log_2 n / \log_2 b = O(\log_2 n)$ so we just write $O(\log n)$ without specifying a base.

Example ($A = \{w \mid w = a^i b^i \text{ for } i \geq 0\}$)

Let $n = |w|$ be the size of the input.

DTM specification:

- 1 Check the input is of the form a^*b^* .
No extra space is needed.
- 2 Keep a counter in binary to count a 's.
 $O(\log n)$ bits.
- 3 Keep a counter in binary to count b 's.
 $O(\log n)$ bits.
- 4 Check if the two counters are equal.
No extra space is needed.

Total space cost: $O(\log n)$. So, $A \in \mathbf{L}$

Review

Space
complexity

PSPACE & NSPACE
Example

Savitch
Theorem

PSPACE =
NSPACE
Venn diagram

Logarithmic
space
Encoding numbers

Complexity
Onion

How do these classes compare to each other?

Define

$$\mathbf{EXPTIME} = \text{TIME}(2^n) \cup \text{TIME}(2^{n^2}) \cup \text{TIME}(2^{n^3}) \cup \dots$$

$$\mathbf{EXPSPACE} = \text{SPACE}(2^n) \cup \text{SPACE}(2^{n^2}) \cup \text{SPACE}(2^{n^3}) \cup \dots$$

We currently know that

$$L \subseteq NL \subseteq P \subseteq NP \subseteq \mathbf{PSPACE} \subseteq \mathbf{EXPTIME} \subseteq \mathbf{EXPSPACE}$$

We also know that

$$P \neq \mathbf{EXPTIME}$$

$$L \neq \mathbf{PSPACE}$$

$$\mathbf{PSPACE} \neq \mathbf{EXPSPACE}$$

Review

Space complexity

PSPACE & NSPACE

Example

Savitch Theorem

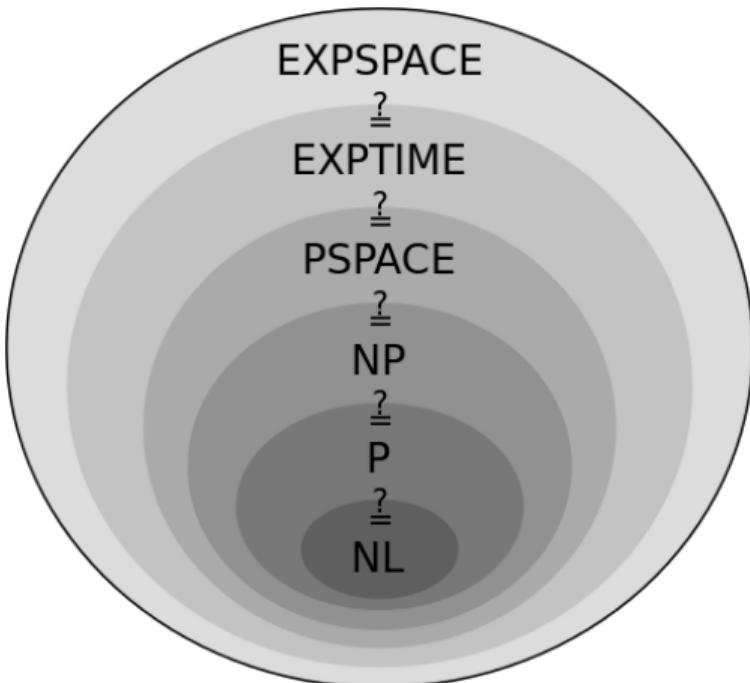
PSPACE = NSPACE

Venn diagram

Logarithmic space

Encoding numbers

Complexity Onion



Review

Space
complexity

PSPACE & NSPACE

Example

Savitch
TheoremPSPACE =
NSPACE

Venn diagram

Logarithmic
space

Encoding numbers

Complexity
Onion

The Extended Chomsky Hierarchy

