Limitations of the Regular Languages
The Pumping Lemma

Dr Kamal Bentahar

School of Science, Coventry University

Lecture 4

Pumping
Lemma

0/15

Pumping
Lemma

Mindmap

a"b"

ww

0/15

Last week. ..

Regular Languages

The class of regular languages can be:
Recognized by NFAs. (equiv. GNFA or e-NFA or NFA or DFA).
Described using Regular Expressions.

Today:
See the limit of regular languages.
How to show a language is not regular.

Pumping
Lemma

Mindmap

1/15

Types of proofs

We show a language is regular using “proof by existence”:
m Construct an NFA recognizing it.

m Write a Regular Expression for it.
Using closure under the union, concatenation and star operations.

However, if a languages is not regular then how can we show that?!

Pumping
Lemma

Proof by existence

a"b"

ww

2/15

s it raining now? — example of proof by contradiction e

Proof by
ict

contradiction

m [s it raining now?
m Suppose it is.

m Let us go outside where it is supposed to be raining.

m [f it is raining then we should get wet.
(No umbrella, etc.)

m However, we did not get wet!
m Thus, it is not raining!

3/15

Eulerian paths — example of proof by contradiction

Is it possible to traverse
this graph by travelling
along each edge
exactly once?

m Suppose it is possible.
m How many times would each vertex be visited?

m Every time a vertex is entered, it is also exited.

m So, each vertex must have an even number of
neighbours.

m The starting and ending vertices are exceptions:
odd number of neighbours.

m There can only be 0 or 2 such exceptions.

m However, this graph has 4 exceptions!

m Thus, it is impossible to traverse this graph by
travelling along each path exactly once.

Pumping
Lemma

Proof by
contradiction

4/15

Types of proofs — Proof by contradiction

To prove a language is not regular, we can use proof by contradiction.
m We need a property that all regular languages must satisfy.
m Then, if a given language does not satisfy it then it cannot be regular.

Let us try to understand the regular languages (RLs) a bit more. ..
m Let us examine some examples in the next few slides. . .

m For each automaton, let us think about the path taken by an accepted
string — is it “straight” or does it loop?

Pumping
Lemma

Proof by
contradiction

5/15

Unary alphabet {1} — Strings of length 3,5,7,9, . .. Lomma.

Unary alphabet

() 1 () 1 1 @
—>

m 111 takes a “straight path” to the accept state

m 11111 goes through a loop.

m Repeating the looped part produces longer strings:

N 3 NP N KK A R KA KRNI

m In fact, we can also omit the 11 loop to get: 111.

1,...

We say: we pump the substring 11.
2, the length of 11, is called: pumping length.

6/15

Pigeon-Hole Principle

If we put more than n pigeons into n holes then there must be a hole with
more than one pigeon in.

Let L be a regular language over a unary alphabet ¥ = {1}.
The language L is:

m either finite, in which case it is regular, trivially;

m or infinite, in which case its DFA will have to loop:

m The DFA that recognizes L has a finite number of states.
m Any string in L determines a path through the DFA.

m So any sufficiently long string must visit a state twice.

m This forms a loop.

This looped part can be repeated any arbitrary number of times to produce
other strings in L.

Pumping
Lemma

7/15

A property satisfied by all RLs

Finite number of states — DFA repeats one or more states if the string is long.

m When a DFA repeats a state R, divide the string into 3 parts:
The substring x before the first occurrence of R
The substring y between the first and last occurrence of R
The substring z after the last occurrence of R

B X, z can be ¢ but y cannot be . (y forms a genuine loop.)
m Then, if the DFA accepts xyz then it accepts all of:

XZ, XYZ, XYYZ, XYYYZ, ...

For any RL L, it is possible to divide an accepted string, that is “long enough”,
into 3 substrings xyz, in such a way that xy*z is a subset of L.

Pumping
Lemma

8/15

The Pumping Lemma (PL)
m We will denote a pumping length by p.
m The precise meaning of “long enough” will be: |w| > p.
m y has to be in the first p symbols of w.

Pumping Lemma (PL)

Let L be a regular language. Then, there exists a constant p such that every
string w from L, with |w| > p, can be broken into three substrings xyz such
that

y#e (or equivalently: |y| # 0 or |y| > 0)
Ixy| <p (y is in the first p symbols of w)
For any k > 0, the string xy*z is also in L (xy*z C L)

Its main purpose in practice is to prove that a language is not regular.
That is, if we can show that a language L does not have this property, then we conclude that L
cannot be recognized by a DFA/NFA or expressed as a regular expression.

Pumping
Lemma

Pumping
Lemma

9/15

The PL Game! =

When the PL is used to prove that a language L is not regular, the proof can
be viewed as a “game” between a Prover and a Falsifier as follows:

O Prover claims L is regular and
fixes a pumping length p.

@ Falsifier challenges Prover and

picks a string w € L of length at
least p symbols.

© Prover writes w = xyz where
Ixy| < pandy #e.

O Falsifier wins by finding a value
for k such that xy“z is notin L.

If Falsifier always wins then L is not regular.
If Prover always wins then L may be regular.

10/15

Pumping
Example (L = {anbn ’ n> O}) Lemma

O Prover claims L is regular and fixes
a pumping length p.

® pProver tries to split w =
a...ab...binto xyzsuchthat|xy| <p

Since y must be within the first p sym-
bols then y is made of a’s only.

@ Falsifier challenges Prover and
picks w = a”b” € L. (lw|=2p > p)

p symbols p symbols

O Falsifier now can for example build

XYPZ=XyyZ=2a............ ab......... b

more than p symbols still p symbols

Hence xy?z ¢ L, and L is not regular.

11/15

Pumping
Lemma

Example (L = {ww | w € {0,1}*})

O Prover claims L is regular and fixes
a pumping length p.

© Prover tries to split w =
0...010...01 into xyz such that

Ixy| <p

Since y must be within the first p sym-
bols then y is made of O’s only.

@ Falsifier challenges Prover and
Choose w = 0°10°1 € L. This has

Iength|w\ (p+1)0 (p+1)>p o

p symbols p symbols

O Falsifier pumps y to produce
Xy?Z=0...cc..... 010......... 01

more than p symbols still p symbols

Hence xy?z ¢ L, and L is not regular.

12/15

Example (L = {a't/ | i > j})

O Prover claims L is regular and fixes
a pumping length p.

©® Prover splits w = a...aab...binto
Xyz:

So y is made of a’s only.

@ Falsifier challenges Prover and
chooses w = a”*+'b”.
Here [w| = (p+1)+p > p.

p + 1 symbols p symbols

O Falsifier pumps y down and forms
xy%z = xz

xyz=a............ ab......... b
at most p symbols still p symbols

Hence xy°z ¢ L, and L is not regular.

Pumping
Lemma

ww

Pumping down

13/15

Food for thought

If “modern computer” = Finite Automaton then:

m We can only store a fixed finite amount of data, say
1TB = 1024* x 8 = 2*3 bits of information, i.e. a maximum of
2% ~ 1(2:647.887,844,335 gtates — a finite number still!
m So, our “modern computer” is not even able to recognize the (entire)
language a"b"!
m At some point, our “modern computer” can no longer keep track of how
many a’s there are in the input.
This occurs when the number of a’s becomes greater than 22"

m We have assumed that the input string is not stored in the
computer. .. (otherwise, it would just run out of memory anyway).

m However, at 3GHz for example, this would take. .. a length of time so
inconceivably huge that the age of the universe would be negligible by
comparison. (So, do we care?)

Pumping
Lemma

ww

Implications

14/15

Space Complexity: Constant Space «+— NFAs

m Finite Automaton: good model for algorithms which require constant
space (i.e. space used does not grow with respect to the input size).

m Some languages cannot be recognized by NFAs.
Space used in computation must grow with respect to the input size.

m We will see a more powerful model of computation next week!

Pumping
Lemma

Constant Space

15/15

	Mindmap
	Proofs
	Proof by existence
	Proof by contradiction

	Observation
	Unary alphabet
	Pigeon-Hole Principle

	Pumping Lemma
	PL Game!
	Examples

	Implications
	Constant Space

