

Mindmap

Proofs

Proof by existence

Proof by
contradiction

Observation

Unary alphabet

Pigeon-Hole
Principle

Pumping
Lemma

PL Game!

Examples

$a^n b^n$

ww

Pumping down

Implications

Constant Space

Limitations of the Regular Languages

The Pumping Lemma

Dr Kamal Bentahar

School of Science, Coventry University

Lecture 4

Mindmap

Proofs

Proof by existence

Proof by contradiction

Observation

Unary alphabet

Pigeon-Hole Principle

Pumping Lemma

PL Game!

Examples

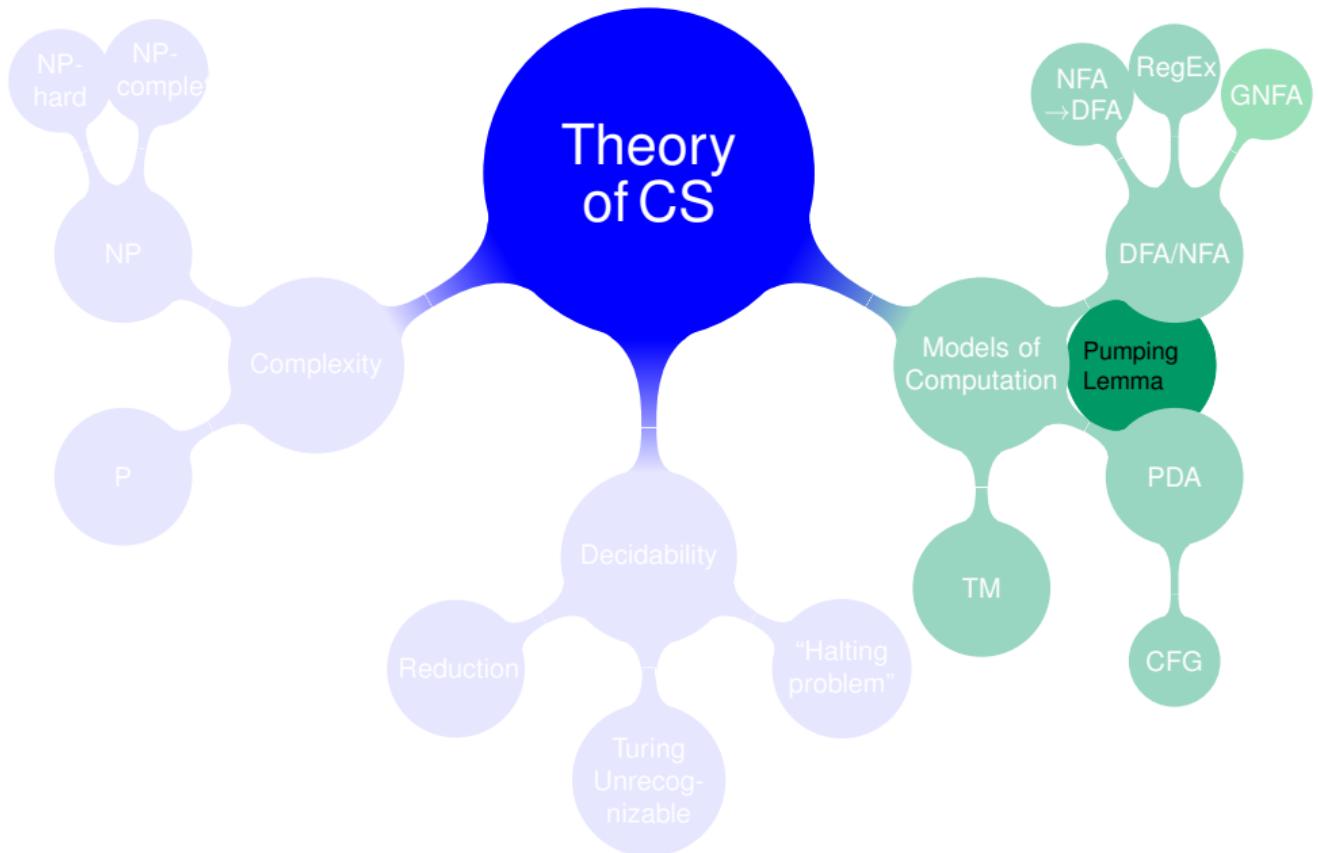
$a^n b^n$

ww

Pumping down

Implications

Constant Space



Regular Languages

The class of regular languages can be:

- 1 Recognized by NFAs. (equiv. GNFA or ϵ -NFA or NFA or DFA).
- 2 Described using **Regular Expressions**.

Today:

- 1 See the limit of regular languages.
- 2 How to show a language is not regular.

Mindmap

Proofs

Proof by existence
Proof by contradiction

Observation

Unary alphabet
Pigeon-Hole Principle

Pumping Lemma

PL Game!
Examples
 $a^n b^n$
 ww

Pumping down

Implications

Constant Space

Types of proofs

Mindmap

Proofs

Proof by existence

Proof by
contradiction

Observation

Unary alphabet
Pigeon-Hole
Principle

Pumping
Lemma

PL Game!
Examples
 $a^n b^n$
 ww

Pumping down

Implications
Constant Space

We show a language is regular using “**proof by existence**”:

- Construct an NFA recognizing it.
- Write a Regular Expression for it.

Using closure under the **union**, **concatenation** and **star** operations.

However, if a language is *not regular* then how can we show that?!

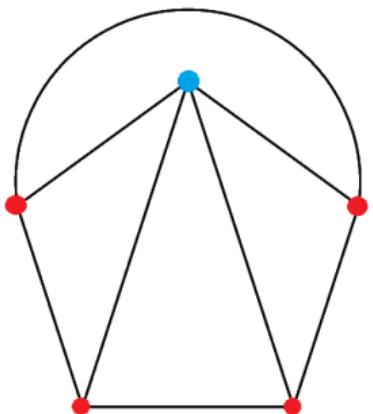
Is it raining now? – example of proof by contradiction

- Is it raining now?
- Suppose it is.
- Let us go outside where it is supposed to be raining.
 - If it is raining then we should get wet.
(No umbrella, etc.)
- However, we did not get wet!
- Thus, it is **not** raining!

[Mindmap](#)[Proofs](#)[Proof by existence](#)[Proof by
contradiction](#)[Observation](#)[Unary alphabet](#)[Pigeon-Hole
Principle](#)[Pumping
Lemma](#)[PL Game!](#)[Examples](#)[aⁿbⁿ](#)[ww](#)[Pumping down](#)[Implications](#)[Constant Space](#)

Eulerian paths – example of proof by contradiction

Is it possible to traverse this graph by travelling along **each edge exactly once**?



- Suppose it is possible.
- How many times would each vertex be visited?
 - Every time a vertex is entered, it is also exited.
 - So, each vertex must have an **even number** of neighbours.
 - The **starting** and **ending** vertices are exceptions: **odd number** of neighbours.
 - There can only be 0 or 2 such exceptions.
- However, this graph has 4 exceptions!
- Thus, it is impossible to traverse this graph by travelling along each path exactly once.

Mindmap

Proofs

Proof by existence

Proof by contradiction

Observation

Unary alphabet

Pigeon-Hole Principle

Pumping Lemma

PL Game!

Examples

$a^n b^n$

ww

Pumping down

Implications

Constant Space

Types of proofs – Proof by contradiction

To prove a language is not regular, we can use **proof by contradiction**.

- We need a **property** that all regular languages must satisfy.
- Then, if a given language does not satisfy it then it cannot be regular.

Let us try to understand the regular languages (RLs) a bit more...

- Let us examine some examples in the next few slides...
- For each automaton, let us think about the **path taken by an accepted string** – is it “straight” or does it loop?

Mindmap

Proofs

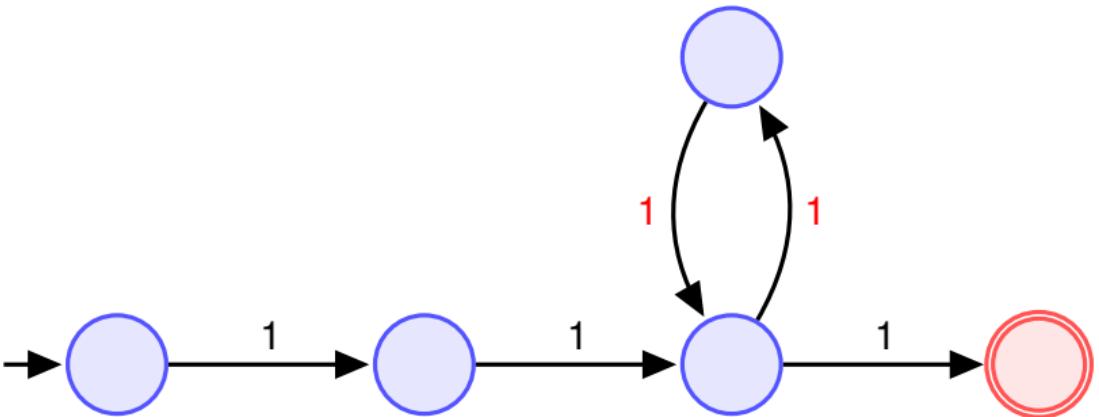
Proof by existence
Proof by contradiction

Observation
Unary alphabet
Pigeon-Hole Principle

Pumping Lemma

PL Game!
Examples
 $a^n b^n$
 ww
Pumping down

Implications
Constant Space

Unary alphabet $\{1\}$ – Strings of length 3, 5, 7, 9, ...

- 111 takes a “straight path” to the accept state
- 11111 goes through a loop.
- Repeating the looped part produces longer strings:
 $11\boxed{11\boxed{11}1}, 11\boxed{11\boxed{11\boxed{11}}1}, 11\boxed{11\boxed{11\boxed{11\boxed{11}}1}, \dots}$
- In fact, we can also omit the 11 loop to get: 111 .

We say: we **pump** the substring **11**.

2, the length of **11**, is called: **pumping length**.

Mindmap

Proofs

Proof by existence

Proof by contradiction

Observation

Unary alphabet

Pigeon-Hole Principle

Pumping Lemma

PL Game!

Examples

 $a^n b^n$ ww

Pumping down

Implications

Constant Space

Pigeon-Hole Principle

If we put **more than n** pigeons into n holes then there must be a hole with more than one pigeon in.

Let L be a regular language over a unary alphabet $\Sigma = \{1\}$.

The language L is:

- either **finite**, in which case it is regular, trivially;
- or **infinite**, in which case its DFA will have to **loop**:
 - The DFA that recognizes L has a finite number of states.
 - Any string in L determines a path through the DFA.
 - So any sufficiently long string must visit a state twice.
 - This forms a loop.

This looped part can be repeated any arbitrary number of times to produce other strings in L .

Mindmap

Proofs

Proof by existence

Proof by
contradiction

Observation

Unary alphabet

Pigeon-Hole
PrinciplePumping
Lemma

PL Game!

Examples

 $a^n b^n$ ww

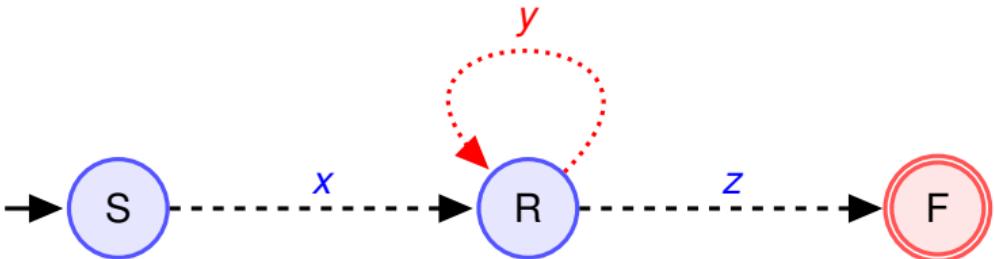
Pumping down

Implications

Constant Space

A property satisfied by all RLs

Finite number of states \rightarrow DFA repeats one or more states if the string is long.



- When a DFA repeats a state R , divide the string into 3 parts:
 - 1 The substring x before the first occurrence of R
 - 2 The substring y between the first and last occurrence of R
 - 3 The substring z after the last occurrence of R
- x, z can be ε but y cannot be ε . (y forms a genuine loop.)
- Then, if the DFA accepts xyz then it accepts all of:
 $xz, xyz, xyyz, xyyyz, \dots$

For any RL L , it is possible to divide an **accepted string**, that is “long enough”, into 3 substrings xyz , in such a way that xy^*z is a subset of L .

Mindmap

Proofs

Proof by existence

Proof by contradiction

Observation

Unary alphabet

Pigeon-Hole Principle

Pumping Lemma

PL Game!

Examples

 $a^n b^n$ ww

Pumping down

Implications

Constant Space

The Pumping Lemma (PL)

- We will denote a **pumping length** by p .
- The precise meaning of “long enough” will be: $|w| \geq p$.
- y has to be in the first p symbols of w .

Pumping Lemma (PL)

Let L be a regular language. Then, there exists a constant p such that every string w from L , with $|w| \geq p$, can be broken into three substrings xyz such that

<ol style="list-style-type: none"> 1 $y \neq \epsilon$ 2 $xy \leq p$ 3 For any $k \geq 0$, the string xy^kz is also in L 	(or equivalently: $ y \neq 0$ or $ y > 0$) y is in the first p symbols of w $(xy^*z \subset L)$
--	--

Its main purpose in practice is to prove that a language is **not** regular.

That is, if we can show that a language L does not have this property, then we conclude that L cannot be recognized by a DFA/NFA or expressed as a regular expression.

Mindmap

Proofs

Proof by existence

Proof by contradiction

Observation

Unary alphabet

Pigeon-Hole Principle

Pumping Lemma

PL Game!

Examples

 $a^n b^n$ ww

Pumping down

Implications

Constant Space

The PL Game!

When the PL is used to prove that a language L is **not regular**, the proof can be viewed as a “game” between a **Prover** and a **Falsifier** as follows:

① **Prover** claims L is regular and fixes a pumping length p .

② **Falsifier** challenges **Prover** and picks a string $w \in L$ of length at least p symbols.

③ **Prover** writes $w = xyz$ where $|xy| \leq p$ and $y \neq \varepsilon$.

④ **Falsifier** wins by finding a value for k such that xy^kz is **not** in L .

If **Falsifier** always wins then L is **not regular**.

If **Prover** always wins then L **may be** regular.

Mindmap

Proofs

Proof by existence

Proof by contradiction

Observation

Unary alphabet

Pigeon-Hole Principle

Pumping Lemma

PL Game!

Examples

$a^n b^n$

ww

Pumping down

Implications

Constant Space

Example ($L = \{a^n b^n \mid n \geq 0\}$)

① **Prover** claims L is regular and fixes a pumping length p .

③ **Prover** tries to split $w = a \dots ab \dots b$ into xyz such that $|xy| \leq p$

$\underline{a \dots \text{.....} ab \dots \dots b}$
 $x \quad \underline{y} \quad z$

Since y must be within the first p symbols then y is made of a 's only.

② **Falsifier** challenges **Prover** and picks $w = a^p b^p \in L$. ($|w| = 2p \geq p$)

$w = \underline{a \dots \dots \dots a} \underline{b \dots \dots \dots b}$
 $\quad \quad \quad p \text{ symbols} \quad \quad \quad p \text{ symbols}$

④ **Falsifier** now can for example build

$xy^2z = xyyz = \underline{a \dots \dots \dots a} \underline{b \dots \dots \dots b}$
 $\quad \quad \quad \text{more than } p \text{ symbols} \quad \text{still } p \text{ symbols}$

Hence $xy^2z \notin L$, and L is not regular.

Mindmap

Proofs

Proof by existence

Proof by contradiction

Observation

Unary alphabet

Pigeon-Hole Principle

Pumping Lemma

PL Game!

Examples

 $a^n b^n$ ww

Pumping down

Implications

Constant Space

Example ($L = \{ww \mid w \in \{0, 1\}^*\}$)

① **Prover** claims L is regular and fixes a pumping length p .

③ **Prover** tries to split $w = 0\dots010\dots01$ into xyz such that $|xy| \leq p$

$$0\dots\underbrace{\dots010\dots}_{y}01$$

Since y must be within the first p symbols then y is made of 0's only.

② **Falsifier** challenges **Prover** and Choose $w = 0^p10^p \in L$. This has length $|w| = (p+1) + (p+1) \geq p$.

$$w = 0\underbrace{\dots}_{p \text{ symbols}}10\underbrace{\dots}_{p \text{ symbols}}01$$

④ **Falsifier** pumps y to produce

$$xy^2z = 0\underbrace{\dots}_{\text{more than } p \text{ symbols}}010\underbrace{\dots}_{\text{still } p \text{ symbols}}01$$

Hence $xy^2z \notin L$, and L is not regular.

Mindmap

Proofs

Proof by existence

Proof by contradiction

Observation

Unary alphabet

Pigeon-Hole Principle

Pumping Lemma

PL Game!

Examples

 $a^n b^n$ ww

Pumping down

Implications

Constant Space

Example ($L = \{a^i b^j \mid i > j\}$)

1 **Prover** claims L is regular and fixes a pumping length p .

3 **Prover** splits $w = a \dots aab \dots b$ into xyz :

$a \dots \underline{\dots} \dots aab \dots \dots b$

x y z

So y is made of a's only.

2 **Falsifier** challenges **Prover** and chooses $w = a^{p+1} b^p$.
Here $|w| = (p+1) + p \geq p$.

$w = a \dots \dots \dots aab \dots \dots \dots b$

$p+1$ symbols p symbols

4 **Falsifier** pumps y down and forms $xy^0 z = xz$

$xy^0 z = a \dots \dots \dots a \underline{b} \dots \dots \dots b$

at most p symbols still p symbols

Hence $xy^0 z \notin L$, and L is not regular.

Mindmap

Proofs

Proof by existence
Proof by contradiction

Observation

Unary alphabet
Pigeon-Hole Principle

Pumping Lemma

PL Game!
Examples
 $a^n b^n$
 ww

Pumping down

Implications
Constant Space

Food for thought

If “modern computer” = Finite Automaton then:

- We can only store a fixed finite amount of data, say $1\text{TB} = 1024^4 \times 8 = 2^{43}$ **bits** of information, i.e. a maximum of $2^{2^{43}} \approx 10^{2,647,887,844,335}$ **states** – a finite number still!
- So, our “modern computer” is not even able to recognize the (entire) language $a^n b^n$!
 - At some point, our “modern computer” can no longer keep track of how many **a**'s there are in the input.
This occurs when the number of **a**'s becomes greater than $2^{2^{43}}$.
- We have assumed that the input string is not stored in the computer... (otherwise, it would just run out of memory anyway).
- However, at 3GHz for example, this would take... a length of time so inconceivably huge that the age of the universe would be negligible by comparison. (So, do we care?)

Mindmap

Proofs

Proof by existence

Proof by
contradiction

Observation

Unary alphabet

Pigeon-Hole
Principle

Pumping
Lemma

PL Game!

Examples

$a^n b^n$

ww

Pumping down

Implications

Constant Space

- Finite Automaton: good model for algorithms which require **constant space** (i.e. space used does not grow with respect to the input size).
- Some languages cannot be recognized by NFAs.
*Space used in computation must **grow** with respect to the input size.*
- We will see a more powerful model of computation next week!

Mindmap

Proofs

Proof by existence
Proof by contradiction

Observation

Unary alphabet
Pigeon-Hole Principle

Pumping Lemma

PL Game!
Examples
 $a^n b^n$
 ww
Pumping down

Implications

Constant Space