Models of Computation:
DFA < NFA < Regular Expressions

Dr Kamal Bentahar

School of Science, Coventry University

Lecture 3

DFA <> NFA
<+ RegEx

1/2) DFA — NFA
2/2) DFA <— NFA

&-NFAs
e Regular
Operations

RegEx —> NFA
NFA — RegEx

NFA — GNFA
GNFA — RegE!

0/26

DFA > NFA

RegE:
NFA RegEX > Regex
—DFA
Review
>
z
—
—
—

0/26

Last time: DFAs & NFAs O heges
mDFA: /:QxX—=Q

m NFA: §:Qx¥—2¢ Review
Computation schematic: T
Deeterministic Nondeterministic
computation computation
c: start ('l
S
(Y -
L reject (E
- accept or reject * accept

Surprising result

NFAs recognize exactly the same languages as DFAs. 1/26

Image of a function

The set of “all the values taken by ¢” is called the image of §.

If Q={A, B, C} and ¢ is given by

Lo
—Al| B|B
x*B || B
cjcCc|C

then the image of § is {B, C}, which is a subset of Q.

DFA <> NFA
<> RegEx

Image of a function

nd
=
«—

2/26

1/2) DFA — NFA

» Given a DFA, how do we construct an equivalent NFA to it?

Observation: DFAs are a special case of NFAs!
Technically, we interpret each state q from the image of ¢ as a set {q}.

Example

| DFA ||

|

|

— A
*B
C

0
B
B
C

3
B
C
C

INFA[| 0 | 1 |

— A
*B
C

{B}
{B}
{C}

{B}
{C}
{C}

DFA <> NFA
<> RegEx

nd
1/2) DFA — NFA
<~

3/26

2/2) DFA < NFA

» How about the reverse? Can we convert any NFA to an equivalent DFA that
recognizes the same language?

Idea: Build a DFA that simulates how the NFA works.

m All we need to keep track of is the current set of states used by the NFA.
m If nis the number of states of the NFA then there are 2" subsets of states.

m Each subset corresponds to a possibility that the DFA must remember.

Let us see some examples. ..

DFA <> NFA
<> RegEx

<~
1/2) DFA — NFA
—

4/26

2/2) DFA < NFA

Example (The Subset construction method)

NFA

S

DFA

[DFA

|0

K

—

*

{A}
{A,B}
{AC}

{A,B}
{A,B}
{A,B}

{A}
{A.C}
{A}

DFA <> NFA
<> RegEx

nd
=
2/2) DFA <— NFA

5/26

2/2) DFA + NFA ora .. e

Example (The subset construction method directly applied to a table) ter0ra— e
NFA o |1 | [DFA — | ?A} | {1A} |
%
A A, B A, B
"B EAi ! EC} Ho- {A} {A, B} | {A, B}
—~ C || {A} (A} * {AB} {A,B} | {A,B,C} -
* {AB,C} | {AB} | {A,B,C}

6/26

Example (A longer example) oL RogEx

<~
—
2/2) DFA <— NFA

| 1 | .
(NFA [0 [1 | ({Z)C .
. g Eg}} g - cb |[{cD) |{CBAl
C | {C,D} | {C,B} {C,B} || {C,DA} | {C,B}
Do | A * {CBA}{ {CDA} | {CB}
* {CDA} | {CD} |{CBA}
0 0 0

7126

2/2) NFA — DFA (The subset construction method)

The subset construction method

Given an NFA N = (Q, ¥, 6, Qstart, F), We can construct an equivalent DFA
D= (Q,%,¥, {qstart}, F') as follows:
m Q c 2%is the set of all possible states that can be reached from Gstart.

m For each entry (A, s) € Q x X in the transition table of D, we find the
result ¢'(A, s) as the union of all §(g, s) for all g € A, i.e.

5'(A)= dq.s)

geA

B F' c @ contains all the sets that have a state from F.

DFA <> NFA
<> RegEx

nd
=
2/2) DFA <— NFA

8/26

Regular Languages

Theorem: The equivalence of NFAs and DFAs

Every NFA has an equivalent DFA.

Theorem: NFAs and DFAs recognize the same languages

NFAs and DFAs are equivalent in terms of languages recognition.

Definition (Regular Languages)

A language is regular if and only if some NFA recognizes it.

DFA <> NFA
<> RegEx

nd
=
«—

Regular
Languages
€

9/26

DFA > NFA

Extension: e-NFAs «— Regular Languages > RegEx
We allow ¢ as a transition label.

Definition of e-NFAs

An -NFA is defined by the 5-tuple)
(Q, %, 6, Qstart, F) like normal NFAs, but
where the transition function is given by

nd
=
«—

-NFAs
Symbol read

5:Qx¥. —29 where¥. =¥ U{e}. —

These can also be converted to NFAs
using the subset construction method.

So we can also say: I
Definition (Regular Languages) e
A language is regular if and only if P

some =-NFA recognizes it.
10/26

DFA > NFA

Regular operations <> RogEx
Let A and B be two languages.
The following operations are called the regular operations: N
E Union: AuUB={x|xecAorxec B} z
i.e. strings from A or from B.
Concatenation: AB= {xy | x € Aand y € B} e
i.e. string from A followed by string from B.

Star: A* = {xyx2---x, | n> 0 and each x; € A}
i.e. concatenations of zero or more strings from A.

A" ={e}UAUAAUAAAU ... = A UATUA2UA .-

11/26

DFA > NFA

Regular Languages — “Closure” under the regular operations °Cregex

If L and M are two regular languages then the following are also regular

LuM (Union: string in L or M) .
LM (Concatenation: string from L followed by string M) -
B L (Star: L* =LPuL'uLlPU---) |
o
The class of regular languages is closed under the regular operations (union, -

concatenation, and star).

Proof outline: Next 3 slides.

12/26

Proof (1/3): Closure under Union

DFA <> NFA
<+ RegEx

Operations

13/26

DFA > NFA

Proof (2/3): Closure under Concatenation . RegEx

~
Image of a functior
And
1/2) DFA — NFA
» 2/2) DFA +— NFA
@ @ e
L J

The Regular
Operations

LiL| 1
RegEx —» NFA

NFA — RegEx
GNFA

NFA — GNFA
GNFA — RegEx

14/26

Proof (3/3): Closure under Star O Rogex.

mage of a functior
(A 1/2) DFA —> NFA
s \

e e aaaaaaaaaaaae,) BT s T2
&-NFAs
: € : The Regular
: : Operations

() € € :
: RegEx — NFA
: NFA — RegEx

NFA — GNFA
GNFA — RegEx

15/26

DFA > NFA

Regular Expressions <> RogEx
We can describe NFAs using Finite Automata (Accept/Reject strings).
We can also describe them using Regular Expressions (Generate strings).

Example o

Letx = {0,1}
m The finite language {1,11,00}: 1+11+00
m Strings ending with 0: X0 (Pattern: 0)
m Strings starting with 11: 112* (Pattern: 11............) Expreesions
m Strings of even length: (XX)* (Pattern, ¢, il HINEE EHEEEEN) —

Definition (Regular Expressions — Recursive definition)

R is said to be a regular expression (RegEx) if and only if
m Ris () or ¢ or a single symbol from the alphabet

m or R is the union, concatenation or star of other (“smaller”) RegEXx’s.
16/26

DFA > NFA

Regular Languages «— Regular Expressions <> RogEx

Notation for writing RegEX’s:
m Union: Plus: B+H
m Concatenation: Juxtaposition: HE
m Star: « as a superscript: B*

Unless brackets are used to explicitly denote precedence, the operators
precedence for the regular operations is: star, concatenation, then union.
Regular

Expression
Theorem ey

A language is regular if and only if some regular expression describes it. =

—

(Textbook uses HUN)
(i.e. no symbol) -

=

Constructive proof in two parts:
m (1/2): RegEx — NFA
m (2/2): NFA — RegEx

17/26

Proof (1/2): RegEx — NFA O Rogex.

We need to cover all the 6 possible cases from the definition of RegEx’s:

Base cases:
R=1

nd
=
«—

~O
R=¢ RegEx — NFA
—>© =

R =awhere a € % (i.e. ais a symbol from the alphabet)

+O——0) 18/26

Proof (1/2): RegEx - NFA — A+ B (Union) o Regix
o ‘

: H Image of a functior
; H “r
E H 1/2) DFA — NFA
H - 2/2) DFA <— NFA

Ex — NI

.
.. FA
—

19/26

DFA > NFA

Proof (1/2): RegEx — NFA — AB (Concatenation) &> RogEx

Image of a functior
And
1/2) DFA — NFA
@ 2/2) DFA <— NFA
1 &-NFAs
The Regular
\ J

Operations

LiLy - N RegEx — NFA
NFA — RegEx

GNFA
NFA — GNFA
GNFA — RegEx

20/26

Proof (1/2): RegEx — NFA

®
@)

DFA <> NFA
<+ RegEx

1/2) DFA — NFA
2/2) DFA <— NFA

&-NFAs
The Regular
Operations

RegEx — NFA
NFA — RegEx

NFA — GNFA
GNFA — RegEx

21/26

Proof (2/2): NFA — RegEx i

We introduce a machine to help us produce RegEx’s for any given NFA:

Generalized Nondeterministic Finite Automaton (GNFA)

GNFAs are similar to NFAs but have the following restrictions/extensions: H:
Only one accept state.
The initial state has no in-coming transitions. :
The accept state has no out-going transitions.
The transitions are RegEXx’s, rather than just symbols from the alphabet. .
We can convert a given NFA N into a GNFA in three steps: GNFAi

Add a new start state with an s-transition to the N’s start state.
Add a new accept state with c-transitions from the N’s accept states.
Replace transitions that have multiple labels with their union.

(e.g. replace a,bby a+ b.)

22/26

Proof (2/2): NFA — RegEx — Converting NFAs into GNFAs

Example (NFA — GNFA)

—»>
+()—

>

0,1
®

'/@

®

S

DFA <> NFA
<> RegEx

nd
=
«—

23/26

Proof (2/2): NFA — RegEx — Reducing GNFAs into RegEx’'s *Caegex.

Key observation: Given a GNFA, the “inner states” may be removed from it,

one at a time, with regular expressions replacing each removed transition.

We end with only the initial and accept states, and a single transition between -
them, labelled with a regular expression. -

The GNFA Algorithm
Convert the NFA to a GNFA. ~
Remove the “inner states,” one at a time, and replace the affected i
transitions using equivalent RegEx’s. GNFA » Rege

Repeat until only two states (initial and accept) remain.
The RegEx on the only remaining transition is the required RegEx.

24/26

DFA > NFA

Example &> RogEx

Image of a functior

+@4

&-NFAs
The Regular
Operations
-
(0+1)1

RegEx — NFA
NFA — RegEx
GNFA

NFA — GNFA
GNFA — RegEx

+

+C% -©)
((0+1)11)*(0+1) ‘
-©

25/26

DFA > NFA

Summary . RegEx

m Introduced GNFAs as a means of converting NFAs to equivalent RegEx’s
m Demonstrated how to turn an NFA into a GNFA

m Demonstrated how to obtain RegEx’s from a GNFA by removing states -
one at a time

m The set of regular languages is exactly equal to the set of languages s
described by some RegEx/GNFA/s-NFA/NFA/DFA.

Regular Languages =

The class of regular languages can be: =
Recognized by NFAs. (equiv. GNFA or e-NFA or NFA or DFA). Summ;y
Described using Regular Expressions.

Generated using Linear Grammars. (See this later!)

26/26

	Review
	Image of a function

	DFA NFA
	1/2) DFA NFA
	2/2) DFA NFA

	Regular Languages
	-NFAs
	The Regular Operations

	Regular Expressions
	RegEx NFA
	NFA RegEx

	Summary

