

Models of Computation: DFA \leftrightarrow NFA \leftrightarrow Regular Expressions

Dr Kamal Bentahar

School of Science, Coventry University

Lecture 3

Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

DFA \leftrightarrow NFA
 \leftrightarrow RegEx

Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

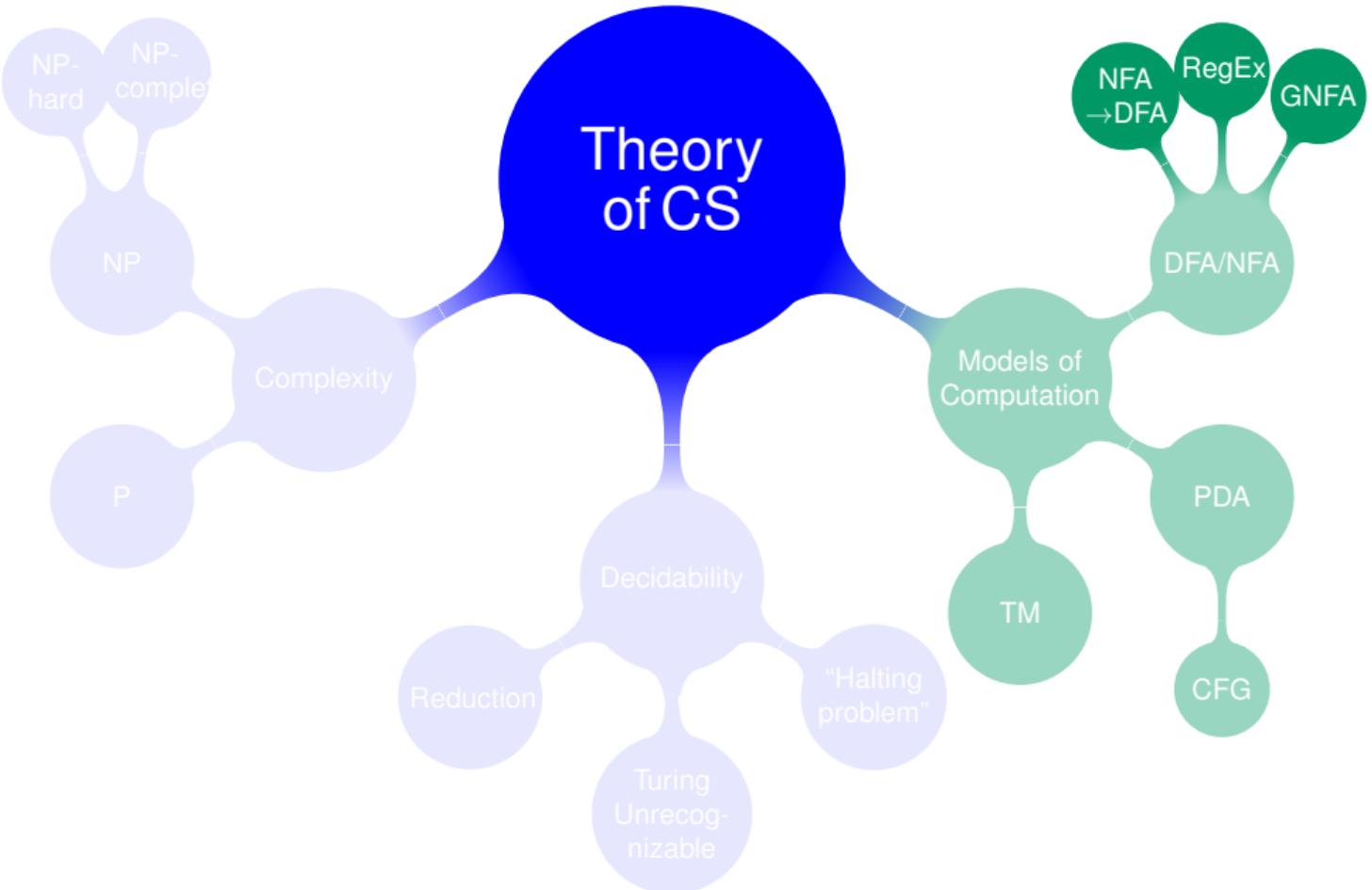
NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx

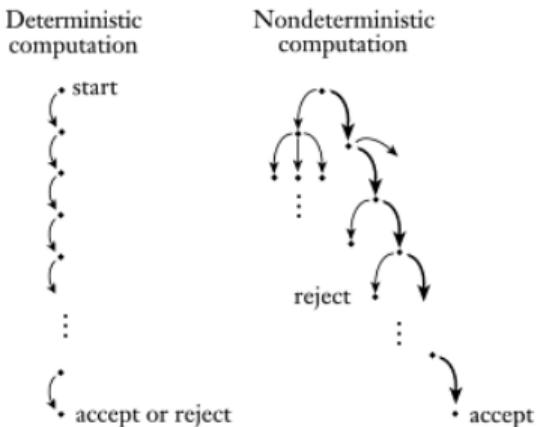
Summary



Last time: DFAs & NFAs

- **DFA:** $\delta: Q \times \Sigma \rightarrow Q$
- **NFA:** $\delta: Q \times \Sigma \rightarrow 2^Q$

Computation schematic:



Surprising result

NFAs recognize exactly the same languages as DFAs.

Image of a function

The set of “all the values taken by δ ” is called the **image** of δ .

Example

If $Q = \{A, B, C\}$ and δ is given by

	0	1
$\rightarrow A$	B	B
$*B$	B	C
C	C	C

then the image of δ is $\{B, C\}$, which is a subset of Q .

Review

Image of a function

DFA \leftrightarrow NFA1/2) DFA \rightarrow NFA2/2) DFA \leftarrow NFA

Regular Languages

 ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFANFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFAGNFA \rightarrow RegEx

Summary

► Given a DFA, how do we construct an equivalent NFA to it?

Observation: DFAs are a *special case* of NFAs!

Technically, we interpret each state q from the image of δ as a set $\{q\}$.

Example

DFA	0	1
$\rightarrow A$	B	B
$*B$	B	C
C	C	C

→

NFA	0	1
$\rightarrow A$	$\{B\}$	$\{B\}$
$*B$	$\{B\}$	$\{C\}$
C	$\{C\}$	$\{C\}$

Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

2/2) DFA \leftarrow NFA

► How about the reverse? Can we convert any NFA to an equivalent DFA that recognizes the same language?

Idea: Build a DFA that simulates how the NFA works.

- All we need to keep track of is the **current set of states** used by the NFA.
- If n is the number of states of the NFA then there are 2^n subsets of states.
- Each subset corresponds to a possibility that the DFA must remember.

Let us see some examples...

Review

Image of a function

DFA \leftrightarrow NFA1/2) DFA \rightarrow NFA2/2) DFA \leftarrow NFA

Regular Languages

 ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFANFA \rightarrow RegEx

GNFA

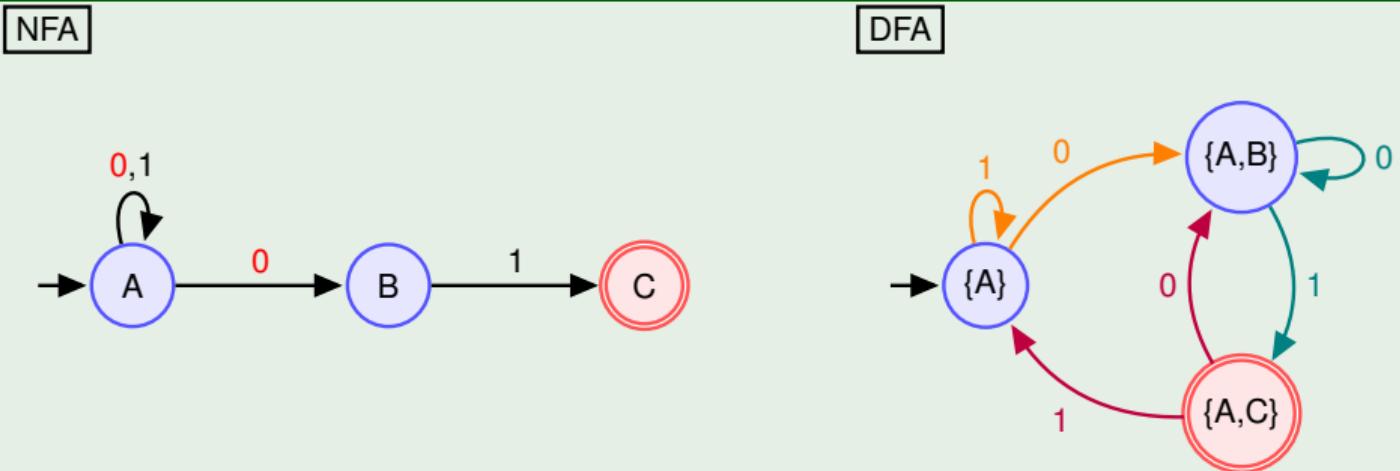
NFA \rightarrow GNFAGNFA \rightarrow RegEx

Summary

2/2) DFA \leftarrow NFA

DFA \leftrightarrow NFA
 \leftrightarrow RegEx

Example (The Subset construction method)



DFA	0	1
\rightarrow {A}	{A,B}	{A}
\cdot {A,B}	{A,B}	{A,C}
$*$ {A,C}	{A,B}	{A}

Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

2/2) DFA \leftarrow NFA

DFA \leftrightarrow NFA
 \leftrightarrow RegEx

Example (The subset construction method directly applied to a table)

NFA	0	1
A	{A, B}	{A, B}
* B	{A}	{C}
→ C	{A}	{A}

DFA	0	1
→ {C}	{A}	{A}
{A}	{A, B}	{A, B}
* {A,B}	{A,B}	{A,B,C}
* {A,B,C}	{A,B}	{A,B,C}

Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

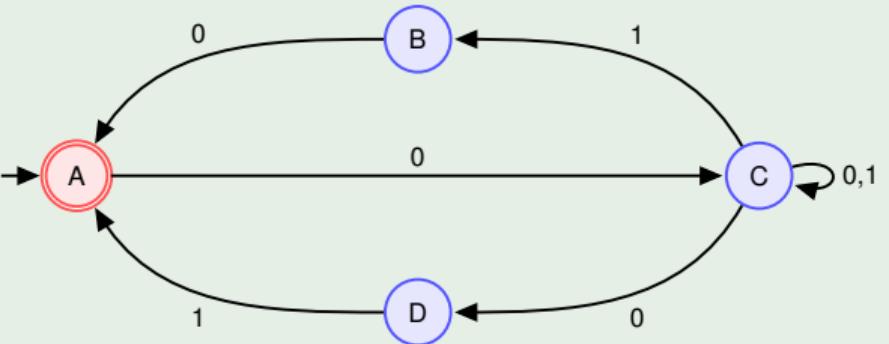
NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

Example (A longer example)

DFA \leftrightarrow NFA
 \leftrightarrow RegEx



NFA	0	1
$\xrightarrow{*}$		
A	{C}	\emptyset
B	{A}	\emptyset
C	{C,D}	{C,B}
D	\emptyset	{A}

\rightarrow

DFA	0	1
$\xrightarrow{*}$	{A}	{C}
	{C}	\emptyset
	{C,D}	{C,B}
	{C,D}	{C,B,A}
	{C,B}	{C,D,A}
	{C,D,A}	{C,B}
*	{C,B,A}	{C,D,A}
*	{C,D,A}	{C,B}
	\emptyset	{C,B,A}

Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

The subset construction method

Given an NFA $N = (Q, \Sigma, \delta, q_{\text{start}}, F)$, we can construct an equivalent DFA $D = (Q', \Sigma, \delta', \{q_{\text{start}}\}, F')$ as follows:

- $Q' \subset 2^Q$ is the set of all possible states that can be reached from q_{start} .
- For each entry $(A, s) \in Q' \times \Sigma$ in the transition table of D , we find the result $\delta'(A, s)$ as the **union** of all $\delta(q, s)$ for all $q \in A$, i.e.

$$\delta'(A, s) = \bigcup_{q \in A} \delta(q, s)$$

- $F' \subset Q'$ contains all the sets that have a state from F .

Review

Image of a function

DFA ↔ NFA

1/2) DFA → NFA

2/2) DFA ← NFA

Regular Languages

ε-NFAs

The Regular Operations

Regular Expressions

RegEx → NFA

NFA → RegEx

GNFA

NFA → GNFA

GNFA → RegEx

Summary

Theorem: The equivalence of NFAs and DFAs

Every NFA has an equivalent DFA.

Theorem: NFAs and DFAs recognize the same languages

NFAs and DFAs are equivalent in terms of languages recognition.

Definition (Regular Languages)

A language is **regular** if and only if some NFA recognizes it.

Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

Extension: ε -NFAs \longleftrightarrow Regular Languages

We allow ε as a transition label.

Definition of ε -NFAs

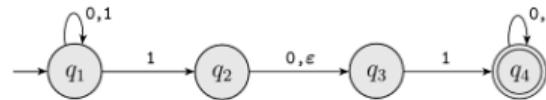
An ε -NFA is defined by the 5-tuple $(Q, \Sigma, \delta, q_{\text{start}}, F)$ like normal NFAs, but where the transition function is given by

$$\delta: Q \times \Sigma_\varepsilon \rightarrow 2^Q \quad \text{where } \Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}.$$

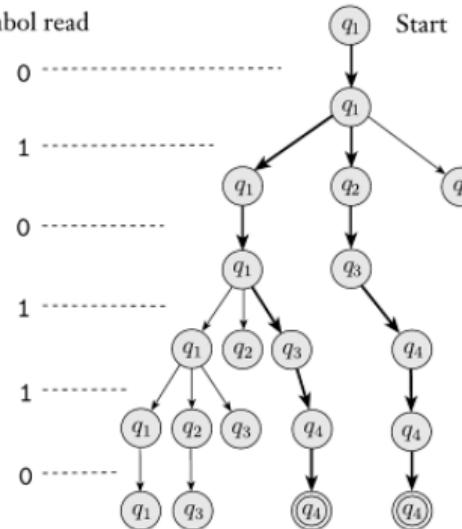
These can also be converted to NFAs using the subset construction method. So we can also say:

Definition (Regular Languages)

A language is **regular** if and only if some ε -NFA recognizes it.



Symbol read



Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ε -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

Regular operations

Let A and B be two languages.

The following operations are called **the regular operations**:

1 **Union:** $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

i.e. strings from A or from B .

2 **Concatenation:** $AB = \{xy \mid x \in A \text{ and } y \in B\}$

i.e. string from A followed by string from B .

3 **Star:** $A^* = \{x_1 x_2 \cdots x_n \mid n \geq 0 \text{ and each } x_i \in A\}$

i.e. concatenations of zero or more strings from A .

$$A^* = \{\varepsilon\} \cup A \cup AA \cup AAA \cup \cdots = A^0 \cup A^1 \cup A^2 \cup A^3 \cup \cdots$$

Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ε -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

Regular Languages – “Closure” under the regular operations

If L and M are two regular languages then the following are also regular

1 $L \cup M$

(Union: string in L or M)

2 LM

(Concatenation: string from L followed by string M)

3 L^*

(Star: $L^* = L^0 \cup L^1 \cup L^2 \cup \dots$)

Theorem

The class of regular languages is closed under the regular operations (union, concatenation, and star).

Proof outline: Next 3 slides.

Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular

Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

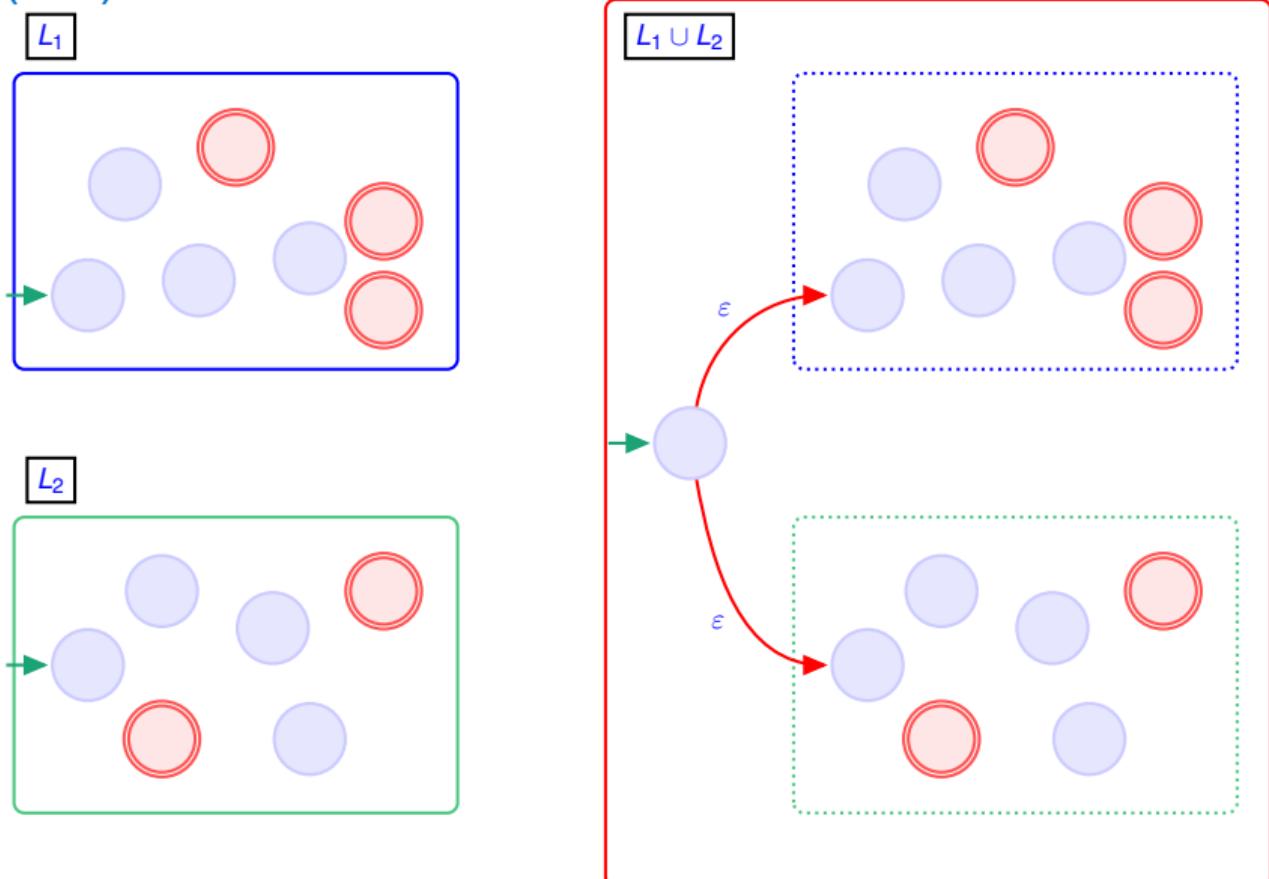
NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

Proof (1/3): Closure under Union

DFA \leftrightarrow NFA
 \leftrightarrow RegEx



Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

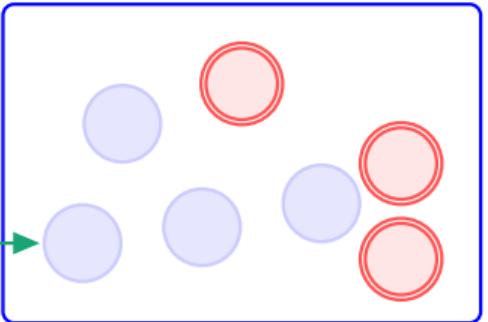
GNFA \rightarrow RegEx

Summary

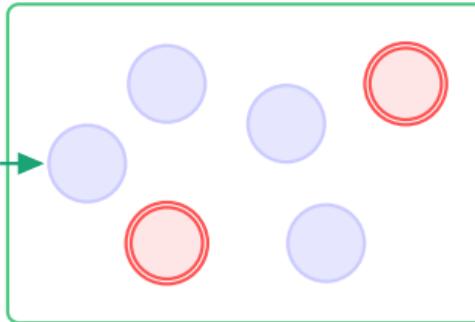
Proof (2/3): Closure under Concatenation

DFA \leftrightarrow NFA
 \leftrightarrow RegEx

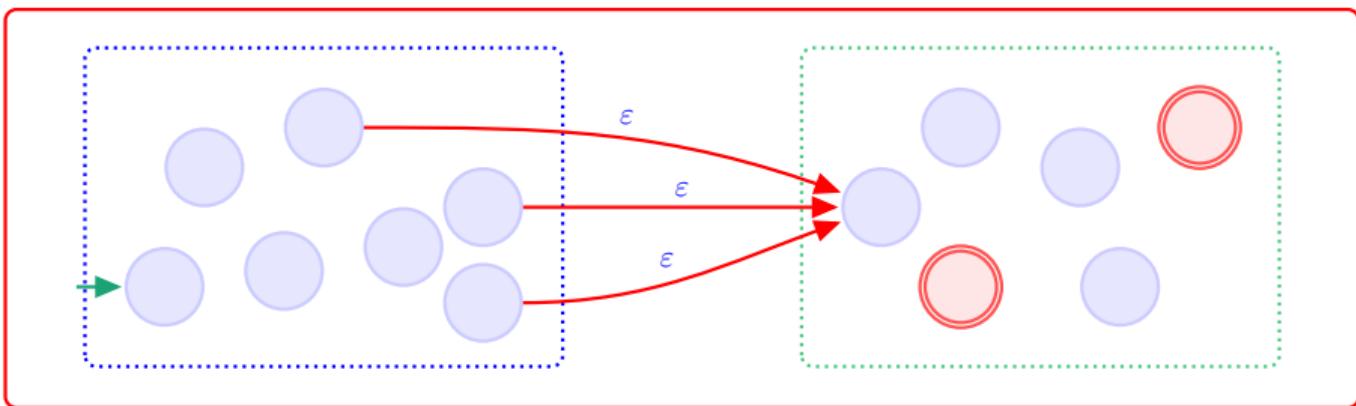
L_1



L_2



$L_1 L_2$



Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

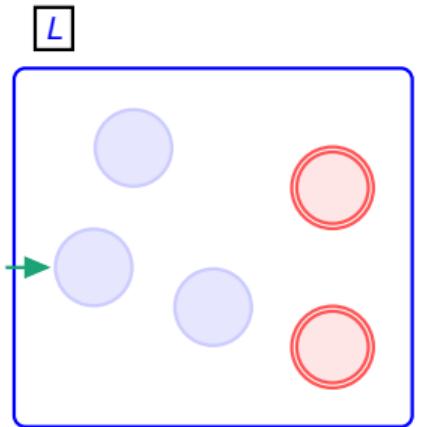
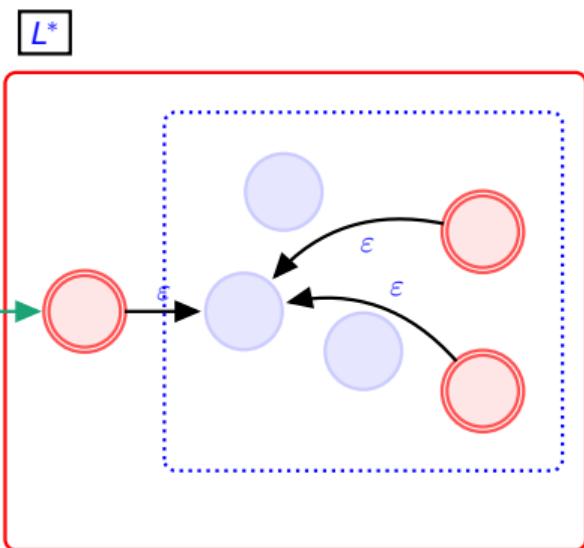
NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

Proof (3/3): Closure under Star

DFA \leftrightarrow NFA
 \leftrightarrow RegEx



Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

Regular Expressions

We can describe NFAs using **Finite Automata** (Accept/Reject strings).

We can also describe them using **Regular Expressions** (Generate strings).

Example

Let $\Sigma = \{0, 1\}$

- The finite language $\{1, 11, 00\}$: $1 + 11 + 00$
- Strings **ending** with 0: $\Sigma^* 0$ (Pattern: 0)
- Strings **starting** with 11: $11 \Sigma^*$ (Pattern: 11
- Strings of even length: $(\Sigma\Sigma)^*$ (Pattern, ε , ■■, ■■■■, ■■■■■■)

Definition (Regular Expressions – Recursive definition)

R is said to be a regular expression (RegEx) if and only if

- R is \emptyset or ε or a single symbol from the alphabet
- or R is the **union**, **concatenation** or **star** of other (“smaller”) RegEx’s.

Review

Image of a function

DFA \leftrightarrow NFA1/2) DFA \rightarrow NFA2/2) DFA \leftarrow NFA

Regular Languages

 ε -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFANFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFAGNFA \rightarrow RegEx

Summary

Regular Languages \longleftrightarrow Regular Expressions

DFA \leftrightarrow NFA
 \leftrightarrow RegEx

Notation for writing RegEx's:

- **Union:** Plus: $\square + \square$ (Textbook uses $\square \cup \square$)
- **Concatenation:** Juxtaposition: $\square \square$ (i.e. no symbol)
- **Star:** $*$ as a superscript: \square^*

Unless brackets are used to explicitly denote *precedence*, the **operators precedence** for the regular operations is: **star, concatenation, then union.**

Theorem

A language is regular if and only if some regular expression describes it.

Constructive proof in two parts:

- (1/2): RegEx \rightarrow NFA
- (2/2): NFA \rightarrow RegEx

Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

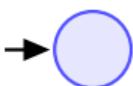
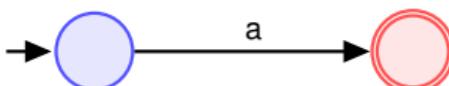
GNFA \rightarrow RegEx

Summary

Proof (1/2): RegEx \rightarrow NFA

We need to cover all the 6 possible cases from the definition of RegEx's:

Base cases:

1 $R = \emptyset$ 2 $R = \epsilon$ 3 $R = a$ where $a \in \Sigma$ (i.e. a is a symbol from the alphabet)

Review

Image of a function

DFA \leftrightarrow NFA1/2) DFA \rightarrow NFA2/2) DFA \leftarrow NFA

Regular Languages

 ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFANFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFAGNFA \rightarrow RegEx

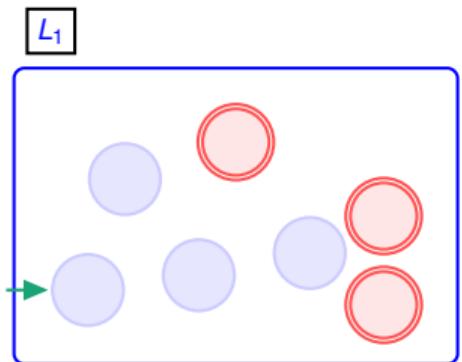
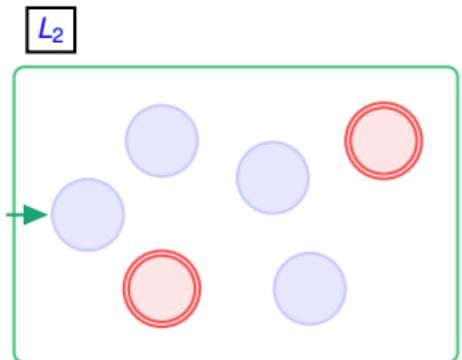
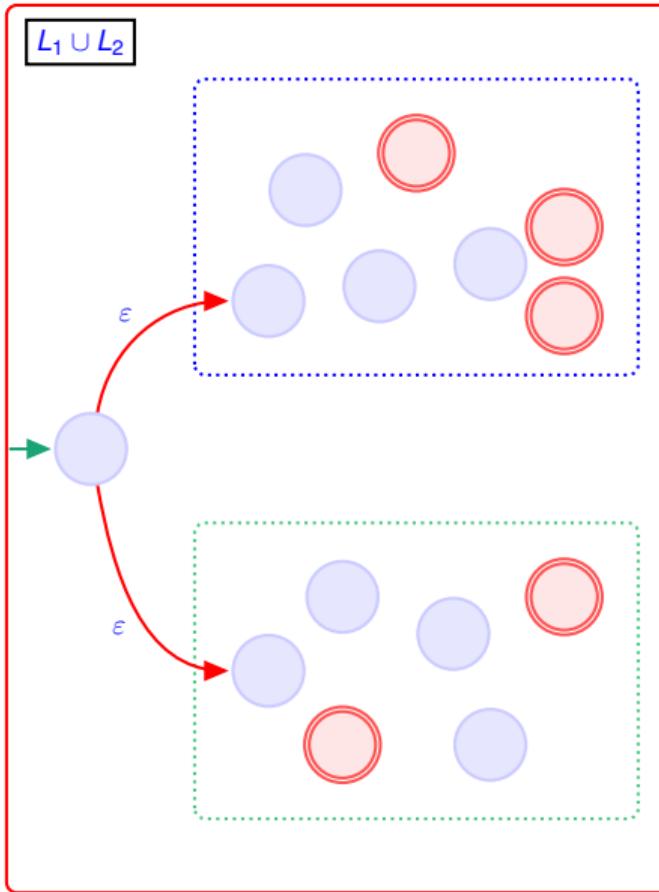
Summary

Proof (1/2): RegEx \rightarrow NFA

$A + B$

(Union)

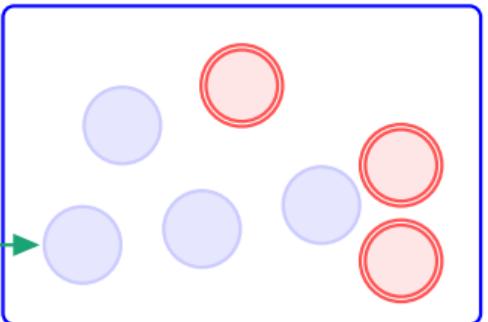
DFA \leftrightarrow NFA
 \leftrightarrow RegEx



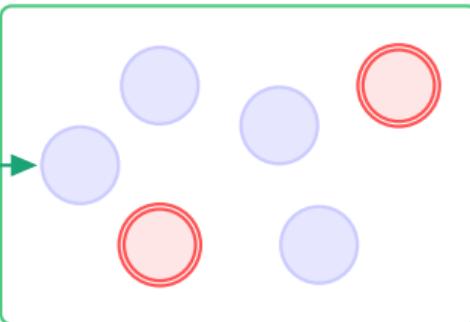
Proof (1/2): RegEx \rightarrow NFA — AB (Concatenation)

DFA \leftrightarrow NFA
 \leftrightarrow RegEx

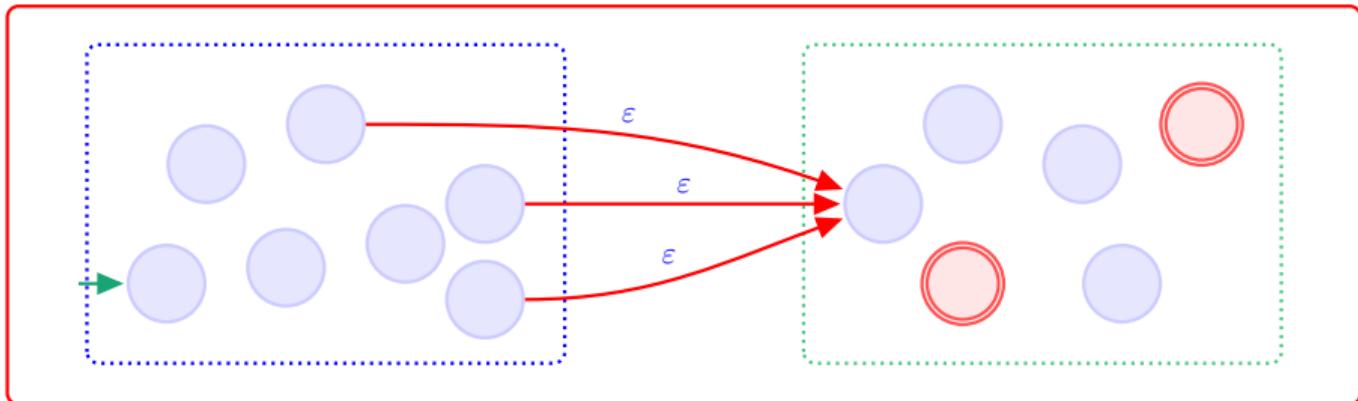
L_1



L_2



$L_1 L_2$



Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

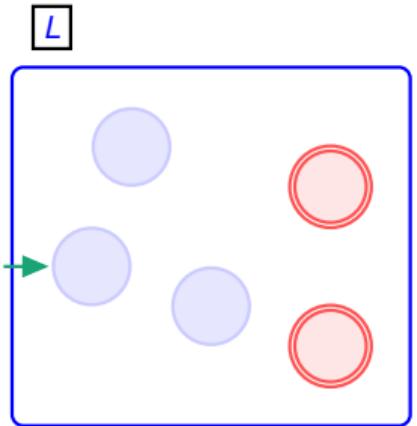
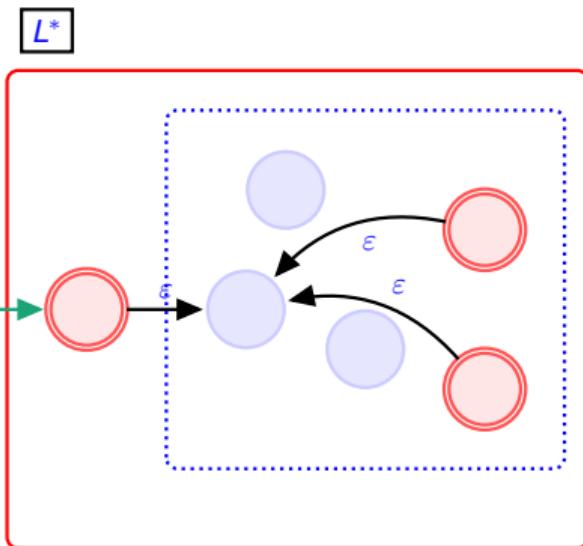
NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

Proof (1/2): RegEx \rightarrow NFA — A^* (Star)

DFA \leftrightarrow NFA
 \leftrightarrow RegEx



Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

Proof (2/2): NFA \rightarrow RegEx

We introduce a machine to help us produce RegEx's for any given NFA:

Generalized Nondeterministic Finite Automaton (GNFA)

GNFAs are similar to NFAs but have the following restrictions/extensions:

- 1 Only **one accept state**.
- 2 The **initial state** has no in-coming transitions.
- 3 The **accept state** has no out-going transitions.
- 4 The **transitions** are RegEx's, rather than just symbols from the alphabet.

We can convert a given NFA N into a GNFA in three steps:

- 1 Add a **new start state** with an ϵ -transition to the N 's start state.
- 2 Add a **new accept state** with ϵ -transitions from the N 's accept states.
- 3 Replace **transitions that have multiple labels** with their union.
(e.g. replace a, b by $a + b$.)

Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

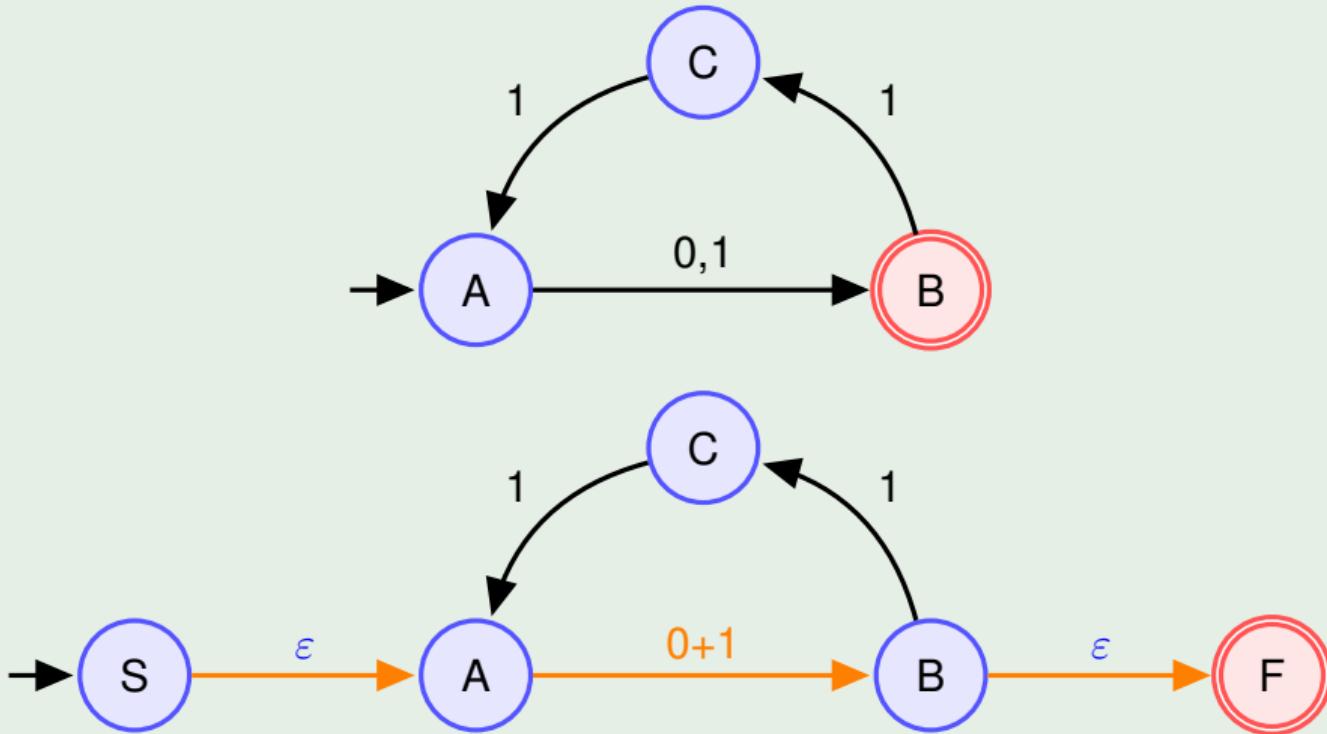
NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

Proof (2/2): NFA \rightarrow RegEx — Converting NFAs into GNFs

Example (NFA \rightarrow GNFA)



DFA \leftrightarrow NFA
 \leftrightarrow RegEx

Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

Proof (2/2): NFA \rightarrow RegEx — Reducing GNFA's into RegEx's

Key observation: Given a GNFA, the “inner states” may be removed from it, one at a time, with regular expressions replacing each removed transition. We end with only the initial and accept states, and a single transition between them, labelled with a regular expression.

The GNFA Algorithm

- 1 Convert the NFA to a GNFA.
- 2 Remove the “inner states,” one at a time, and replace the affected transitions using equivalent RegEx's.
- 3 Repeat until only two states (initial and accept) remain.
- 4 The RegEx on the only remaining transition is the required RegEx.

DFA \leftrightarrow NFA
 \leftrightarrow RegEx

Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

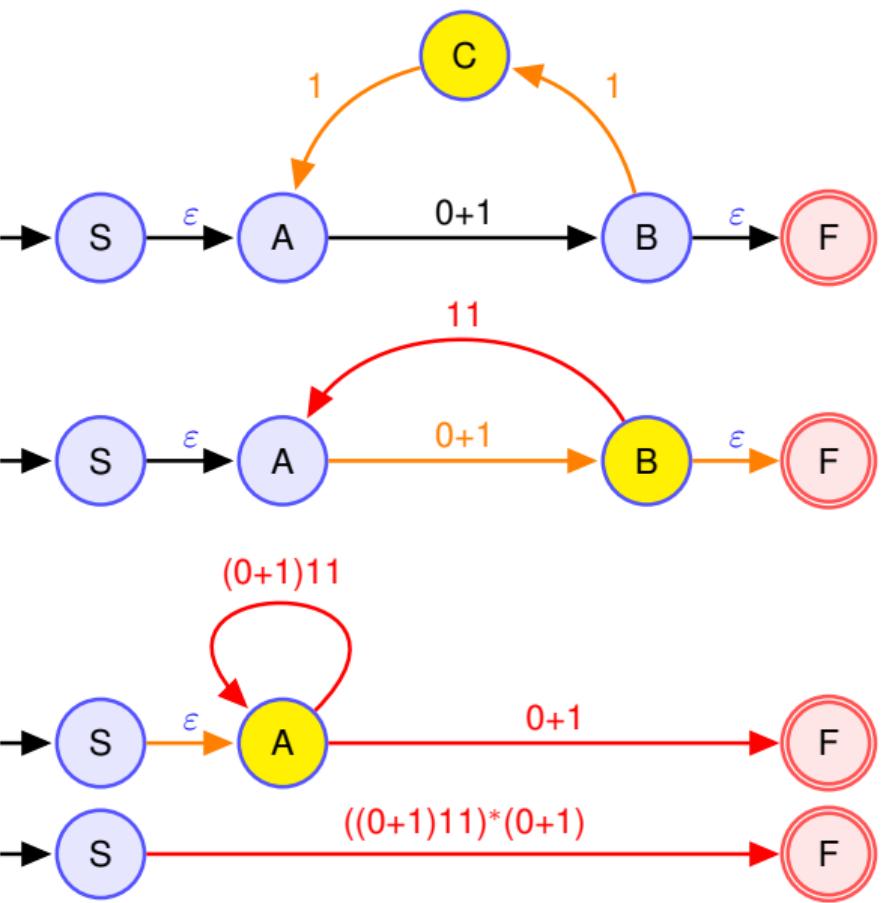
NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

Example

DFA \leftrightarrow NFA
 \leftrightarrow RegEx



Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

Summary

- Introduced GNFA as a means of converting NFAs to equivalent RegEx's
- Demonstrated how to turn an NFA into a GNFA
- Demonstrated how to obtain RegEx's from a GNFA by removing states one at a time
- The set of regular languages is exactly equal to the set of languages described by some RegEx/GNFA/ ϵ -NFA/NFA/DFA.

Regular Languages

The class of regular languages can be:

- 1 Recognized by NFAs. (equiv. GNFA or ϵ -NFA or NFA or DFA).
- 2 Described using **Regular Expressions**.
- 3 Generated using **Linear Grammars**. (See this later!)

Review

Image of a function

DFA \leftrightarrow NFA

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA

Regular Languages

ϵ -NFAs

The Regular Operations

Regular Expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary