
DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Models of Computation:
DFA↔ NFA↔ Regular Expressions

Dr Kamal Bentahar

School of Science, Coventry University

Lecture 3

0 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Theory
of CS

Models of
Computation

DFA/NFA

NFA
→DFA

RegEx
GNFA

PDA

CFG

TM
Decidability

“Halting
problem”

Turing
Unrecog-
nizable

Reduction

Complexity

P

NP

NP-
hard

NP-
complete

0 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Last time: DFAs & NFAs
DFA: δ : Q × Σ→ Q
NFA: δ : Q × Σ→ 2Q

Computation schematic:

Surprising result

NFAs recognize exactly the same languages as DFAs.
1 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Image of a function

The set of “all the values taken by δ” is called the image of δ.

Example

If Q = {A,B,C} and δ is given by

0 1
→ A B B
∗B B C
C C C

then the image of δ is {B,C}, which is a subset of Q.

2 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

1/2) DFA→ NFA

▶ Given a DFA, how do we construct an equivalent NFA to it?

Observation: DFAs are a special case of NFAs!
Technically, we interpret each state q from the image of δ as a set {q}.

Example

DFA 0 1
→ A B B
∗B B C
C C C

→

NFA 0 1
→ A {B} {B}
∗B {B} {C}
C {C} {C}

3 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

2/2) DFA← NFA

▶ How about the reverse? Can we convert any NFA to an equivalent DFA that
recognizes the same language?

Idea: Build a DFA that simulates how the NFA works.
All we need to keep track of is the current set of states used by the NFA.
If n is the number of states of the NFA then there are 2n subsets of states.
Each subset corresponds to a possibility that the DFA must remember.

Let us see some examples. . .

4 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

2/2) DFA← NFA

Example (The Subset construction method)

A B C

0,1

0 1
{A}

{A,B}

{A,C}

1 0

1

0

0

1

NFA DFA

DFA 0 1
→ {A} {A,B} {A}

{A,B} {A,B} {A,C}
* {A,C} {A,B} {A}

5 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

2/2) DFA← NFA

Example (The subset construction method directly applied to a table)

NFA 0 1
A {A, B} {A, B}

* B {A} {C}
→ C {A} {A}

→

DFA 0 1
→ {C} {A} {A}

{A} {A, B} {A, B}
* {A,B} {A,B} {A,B,C}
* {A,B,C} {A,B} {A,B,C}

6 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Example (A longer example)

A

B

C

D

0

0

0,1

1

01

NFA 0 1
→* A {C} ∅

B {A} ∅
C {C,D} {C,B}
D ∅ {A}

→

DFA 0 1
→* {A} {C} ∅

{C} {C,D} {C,B}
{C,D} {C,D} {C,B,A}
{C,B} {C,D,A} {C,B}

* {C,B,A} {C,D,A} {C,B}
* {C,D,A} {C,D} {C,B,A}
∅ ∅ ∅

7 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

2/2) NFA→ DFA (The subset construction method)

The subset construction method
Given an NFA N = (Q,Σ, δ,qstart,F), we can construct an equivalent DFA
D = (Q′,Σ, δ′, {qstart},F ′) as follows:

Q′ ⊂ 2Q is the set of all possible states that can be reached from qstart.
For each entry (A, s) ∈ Q′ × Σ in the transition table of D, we find the
result δ′(A, s) as the union of all δ(q, s) for all q ∈ A, i.e.

δ′(A, s) =
⋃
q∈A

δ(q, s)

F ′ ⊂ Q′ contains all the sets that have a state from F .

8 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Regular Languages

Theorem: The equivalence of NFAs and DFAs

Every NFA has an equivalent DFA.

Theorem: NFAs and DFAs recognize the same languages

NFAs and DFAs are equivalent in terms of languages recognition.

Definition (Regular Languages)

A language is regular if and only if some NFA recognizes it.

9 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Extension: ε-NFAs←→ Regular Languages
We allow ε as a transition label.

Definition of ε-NFAs
An ε-NFA is defined by the 5-tuple
(Q,Σ, δ,qstart,F) like normal NFAs, but
where the transition function is given by

δ : Q × Σε → 2Q where Σε = Σ ∪ {ε}.

These can also be converted to NFAs
using the subset construction method.
So we can also say:

Definition (Regular Languages)

A language is regular if and only if
some ε-NFA recognizes it.

10 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Regular operations
Let A and B be two languages.

The following operations are called the regular operations:
1 Union: A ∪ B = {x | x ∈ A or x ∈ B}

i.e. strings from A or from B.

2 Concatenation: AB = {xy | x ∈ A and y ∈ B}
i.e. string from A followed by string from B.

3 Star: A∗ = {x1x2 · · · xn | n ≥ 0 and each xi ∈ A}
i.e. concatenations of zero or more strings from A.

A∗ = {ε} ∪ A ∪ AA ∪ AAA ∪ · · · = A0 ∪ A1 ∪ A2 ∪ A3 ∪ · · ·

11 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Regular Languages – “Closure” under the regular operations

If L and M are two regular languages then the following are also regular
1 L ∪M (Union: string in L or M)
2 LM (Concatenation: string from L followed by string M)
3 L∗ (Star: L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·)

Theorem
The class of regular languages is closed under the regular operations (union,
concatenation, and star).

Proof outline: Next 3 slides.

12 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Proof (1/3): Closure under Union

ε

ε

L1

L2

L1 ∪ L2

13 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Proof (2/3): Closure under Concatenation

ε

ε

ε

L1 L2

L1L2

14 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Proof (3/3): Closure under Star

ε

ε

ε

L
L∗

15 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Regular Expressions
We can describe NFAs using Finite Automata (Accept/Reject strings).
We can also describe them using Regular Expressions (Generate strings).

Example

Let Σ = {0,1}
The finite language {1,11,00}: 1+11+00
Strings ending with 0: Σ∗0 (Pattern:0)
Strings starting with 11: 11Σ∗ (Pattern: 11)
Strings of even length: (ΣΣ)∗ (Pattern, ε,■■,■■■■,■■■■■■)

Definition (Regular Expressions – Recursive definition)

R is said to be a regular expression (RegEx) if and only if
R is ∅ or ε or a single symbol from the alphabet
or R is the union, concatenation or star of other (“smaller”) RegEx’s.

16 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Regular Languages←→ Regular Expressions
Notation for writing RegEx’s:

Union: Plus: ■+■ (Textbook uses ■∪■)
Concatenation: Juxtaposition: ■■ (i.e. no symbol)
Star: ∗ as a superscript: ■∗

Unless brackets are used to explicitly denote precedence, the operators
precedence for the regular operations is: star, concatenation, then union.

Theorem
A language is regular if and only if some regular expression describes it.

Constructive proof in two parts:
(1/2): RegEx→ NFA
(2/2): NFA→ RegEx

17 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Proof (1/2): RegEx→ NFA
We need to cover all the 6 possible cases from the definition of RegEx’s:

Base cases:
1 R = ∅

2 R = ε

3 R = a where a ∈ Σ (i.e. a is a symbol from the alphabet)

a
18 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Proof (1/2): RegEx→ NFA — A + B (Union)

ε

ε

L1

L2

L1 ∪ L2

19 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Proof (1/2): RegEx→ NFA — AB (Concatenation)

ε

ε

ε

L1 L2

L1L2

20 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Proof (1/2): RegEx→ NFA — A∗ (Star)

ε

ε

ε

L
L∗

21 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Proof (2/2): NFA→ RegEx
We introduce a machine to help us produce RegEx’s for any given NFA:

Generalized Nondeterministic Finite Automaton (GNFA)

GNFAs are similar to NFAs but have the following restrictions/extensions:
1 Only one accept state.
2 The initial state has no in-coming transitions.
3 The accept state has no out-going transitions.
4 The transitions are RegEx’s, rather than just symbols from the alphabet.

We can convert a given NFA N into a GNFA in three steps:
1 Add a new start state with an ε-transition to the N ’s start state.
2 Add a new accept state with ε-transitions from the N ’s accept states.
3 Replace transitions that have multiple labels with their union.

(e.g. replace a,b by a + b.)

22 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Proof (2/2): NFA→ RegEx —- Converting NFAs into GNFAs
Example (NFA→ GNFA)

A

C

B
0,1

11

S A

C

B F
ε 0+1

1

ε

1

23 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Proof (2/2): NFA→ RegEx —- Reducing GNFAs into RegEx’s

Key observation: Given a GNFA, the “inner states” may be removed from it,
one at a time, with regular expressions replacing each removed transition.
We end with only the initial and accept states, and a single transition between
them, labelled with a regular expression.

The GNFA Algorithm

1 Convert the NFA to a GNFA.
2 Remove the “inner states,” one at a time, and replace the affected

transitions using equivalent RegEx’s.
3 Repeat until only two states (initial and accept) remain.
4 The RegEx on the only remaining transition is the required RegEx.

24 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Example

S A

C

B F
ε 0+1

1

ε

1

S A B F
ε 0+1

11

ε

S A F
ε 0+1

(0+1)11

S F
((0+1)11)∗(0+1)

25 / 26

DFA ↔ NFA
↔ RegEx

Review
Image of a function

DFA ↔ NFA
1/2) DFA→ NFA

2/2) DFA← NFA

Regular
Languages
ε-NFAs

The Regular
Operations

Regular
Expressions
RegEx→ NFA

NFA→ RegEx

GNFA

NFA→ GNFA

GNFA→ RegEx

Summary

Summary

Introduced GNFAs as a means of converting NFAs to equivalent RegEx’s
Demonstrated how to turn an NFA into a GNFA
Demonstrated how to obtain RegEx’s from a GNFA by removing states
one at a time
The set of regular languages is exactly equal to the set of languages
described by some RegEx/GNFA/ε-NFA/NFA/DFA.

Regular Languages

The class of regular languages can be:
1 Recognized by NFAs. (equiv. GNFA or ε-NFA or NFA or DFA).
2 Described using Regular Expressions.
3 Generated using Linear Grammars. (See this later!)

26 / 26

	Review
	Image of a function

	DFA NFA
	1/2) DFA NFA
	2/2) DFA NFA

	Regular Languages
	-NFAs
	The Regular Operations

	Regular Expressions
	RegEx NFA
	NFA RegEx

	Summary

