Models of
Computation:
DFAs & NFAs

Models of Computation: DFAs & NFAs

Deterministic/Non-deterministic Finite Automata

Dr Kamal Bentahar

School of Science, Coventry University

Lecture 2 e

Models of
Computation

Models of
Computation:
DFAs & NFAs

DFA/NFA

0/21

“Problems”. .. L

DFAs & NFAs

Decision
problems

Last week: We can focus on decision problems only.

Decision problems

A yes/no question on a set of inputs.

Given a search space and a desired property,
decide whether the search space contains an item with that property or not.

1/21

Encoding problems

m The question will be presented as a string:
A sequence of symbols from an alphabet.

Think about words from the English language:
m Alphabet: {a,A,b,B,c,C,...,x,X,y,Y,z,Z}.
m Example words: Hello, Coventry, and, or, a, ...

m Notation
] Notation Meaning Example usage
Y Alphabet: finite set of symbols. ¥ = {0,1} Y ={a}
wor s String made of symbols from %~ 01100 aaa
|w| Length of the string w |00 =2 lal =1
¢ Empty string — has no symbols. |¢| =0
xy Concatenation of x and y x=0,y=10 = xy =010

Models of
Computation:
DFAs & NFAs

Decision
problems

2/21

Concept of “language”

Think about words from the English language again:
m Alphabet: {a,A,b,B,c,C,....,x,X,y,Y,z,Z}.
m However, not all strings over this alphabet are valid words.
In English: Hello is valid, but olleH is not.
m Divide all possible instances into yes-instances and no-instances.
m — English is the set of “yes-instances over its alphabet.”
m — English is a subset of “all possible strings over its alphabet.”

Models of
Computation:
DFAs & NFAs

Languages

3/21

Concept of “language”

In general:

|
m A (decision) problem is a set of instances and a required property.
m Each problem instance is represented by a string over an alphabet .
m A yes-instance satisfies the property required by the problem.
m A no-instance does not satisfy the property required by the problem.

m The set of yes-instances defines a language associated to the problem.

m We say that the yes-instances belong to the language.
m No-instances (including invalid strings) do not belong to the language.

Models of
Computation:
DFAs & NFAs

Languages

4/21

Language recognition
Decision problems can be encoded as problems of language recognition.

Problem: Is a given number even?

Instance: A number n (encoded in binary).

Question: Is n even?

(i.e. is it divisible by 2?)

m Given n = 1249 = 1100,, the answer is yes because 12 = 2 x 6.
m Given n = 1319 = 11015, the answer is no because 13 =2 x 6 + 1.

Here:

and

Numbers
Even

{0,1,10,11,100,101,110,111,1000, ...}
{0,10,100,110,1000, ...}

Even c Numbers

Models of
Computation:
DFAs & NFAs

Language
recognition

5/21

Language recognition
Decision problems can be encoded as problems of language recognition.

Problem: Is a given number even?

Instance: A number n (encoded in binary).

Quest

ion: Is n even?

(i.e. is it divisible by 27?)

m n can be represented as a string in binary using only two symbols: 0, 1.

m We can write a decision procedure to decide if this string belongs to the
language of yes instances.

VAR A e

: b « least significant bit of n.
if b= 0 then
return yes
. else
return no
: end if

Models of
Computation:
DFAs & NFAs

Language
recognition

6/21

Models of

Term'nOIOgy ggrput?‘lt::o::
. s & S
m Languages are defined over an alphabet .
m X" set of all possible strings over ¥, whose length is finite.
(“Sigma star’)
If ¥ ={0,1} then
Y*={ _¢e , 0,1 ,00,01,10,11,000,001,010,011,100,101,110,111,...}
~ =~ ~
Length O | ength 1 Length 2 Length 3

Terminology

m A language can be regarded as “a subset of X*”.

If ¥ = {0, 1} then the language of even numbers Even C ¥* is:

Even = {0,00, 10,000,010, 100, ...}

7/21

Concept of “Model of Computation” ORI

DFAs & NFAs

m We want to think more precisely about problems and computation.

m — categorise them by the type of computation which resolves them.

m — idea of models of computation: G Stion

We introduce simple, theoretical machines and study their limits.

m Far simpler than Von Neumann Machines, ...
m ...but some have greater power than Von Neumann machines, ...
m...... but cannot be created in reality!

m Our first model is the Deterministic Finite Automaton (DFA) model.

8/21

Models of

The Deterministic Finite Automaton (DFA) model Computation:
Example (Is a given binary number even?)

Decimal Binary
0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100
1 9/21

0

Example

MO ©ONOOAWN = O

Informal definition of DFAs L

DFAs & NFAs

The Deterministic Finite Automaton (DFA) model

A directed and labelled graph which describes how a string of symbols from
an alphabet will be processed.
m Each vertex is called a state.
m Each directed edge is called a transition.
m The edges are labelled with symbols from the alphabet.
m Each state must have exactly one transition defined for every symbol.
m One state is designated as the start state.
B Some states are designated as accept states.

m A string is processed symbol by symbol, following the respective
transitions:

m At the end, if we land on an accept state then the string is accepted,
m otherwise it is rejected.

10/21

Important rules for DFAs

m Each state must have exactly one transition defined for each symbol.
m There must be exactly one start state.

m There may be multiple accept states.

m There may be more than one symbol defined on a single transition.

Models of
Computation:
DFAs & NFAs

Important rules

11/21

JFLAP simulation time! L

DFAs & NFAs

Let us build DFAs over the alphabet {0, 1} to recognize strings that:
m begin with 0;
m end with 1;
m either begin or end with 1;
m begin with 1 and contain at least one 0.

12/21

Formal definition of DFAs L

DFAs & NFAs

Formal definition of a DFA

A Deterministic Finite Automaton (DFA) is defined by the 5-tuple
(Q7 Z? 57 CIstarb F) Where:

m Qs afinite set called the set of states.
m Y is a finite set called the alphabet.
B J: Qx X — Qis a total function called the transition function.

B Gstart IS the unique start state. (9start € Q)

m F is the set of accepting states. (FCQ rmon
Recall:

m Total function means it is defined for “all its inputs.”

m ¥, §: Sigma, delta. (Greek letters)

m €, C: “element of a set”, “subset of a set, or equal’”. (Set notation)

13/21

Example (Formal specification of a DFA) Models of

Computation:
DFAs & NFAs

a This DFA is defined by the 5-tuple
(07 Z? 57 CIstarh F) Where

m Q={AB,C}
b mY=/{ab}

m § is given by the table:
| lalb]
A|B
° @ ° B|C
ClA
— indicates the start state
- b + indicates an accept state.
a

x % 4
oOm>

B Qstart = A
m F={B,C}

14/21

Notation: Functions/Maps

0: Qx ¥ — Qmeans that:

m the function ¢ takes a pair (q, s) as input where:

m g is a state from Q
B sis an alphabet symbol from ¥,

m and returns a state from Q as the result.

We put — next to the start state,
and * next to the accept states.

Models of
Computation:
DFAs & NFAs

Table form:
alb
—Qo || Go | Q1
*(1 || Qo | Q2

This means that:

Notation: Functions

6(q.a) = Qo
6(qo,b) =
é(q1,8) = o
6(gq1,b) = @

= ! 15/21

Recall: Power set — set of all subsets L

DFAs & NFAs

29 is the set of all subsets of Q (called: the power set of Q)

If Q={A,B, C} then

29— 0 .{A}.{B}.{C}.{AB}.{A C}.{B.C},{AB.C) }
~~ = ———
Empty set One element each Two elements each Q

It has 8 elements: 2size0f Q — o#Q _ 23 _ g

Power set

16/21

The Nondeterministic Finite Automaton (NFA) model

From the design point of view: NFAs are almost the same as DFAs.
DFA: every state has one and only one outward transition defined for each

symbol.

NFA: every state has zero or more transitions defined for each symbol.

Formally:
DFA: §: Q x ¥ — Q is a total function, i.e.

4 is defined for every pair (g, s) from Q x

d sends (g, s) to a state from Q.
NFA: §: Q x ¥ — 2% is a partial function, i.e.

(exactly one state, no more, no less)

J is not necessarily defined for every pair (g, s) from Q x x.

d sends (g, s) to a subset of Q.

(many, one, or no states)

Models of
Computation:
DFAs & NFAs

Informal description

17/21

Models of

FOl’mal def'nltlon Of NFAS Computation:

DFAs & NFAs

Definition of an NFA

A Nondeterministic Finite Automaton (NFA) is defined by the 5-tuple
(Q? Z? 67 QStarb F) Where

m Qis a finite set called the set of states

m Y is a finite set called the alphabet

m §: Q x ¥ — 2%is a partial function called the transition function

B Gstart IS the unique start state. (g0 € Q)
m F is the set of accepting states. (FCQ)

Formal definition

18/21

NFA example
a,b

(@l

Q = {9 91,3}

ab

Y = {ab}
Qstat = Qo
F = {g}
| | a [b]
s - |9 | {9 a1} |{q}
ol 0 {Q2}
Qo || {qe} | {g}

Models of
Computation:
DFAs & NFAs

Examples

19/21

NFA example

P OnsOndO =TI

() ;

a b

—qo || {q1,92} | 0
qi || {ags} | 0
Qo 0 {95}
a3 0 {Qa}
«Qa | {qa} |{qa}
Qs || {ge} 0
G | {9} | {9}

Q = {qu d1,92,043, 94, G5, q6}

Y = {ab}
Qstat = Qo
F = {04,05}

Models of
Computation:
DFAs & NFAs

Examples

20/21

JFLAP simulation time! L

DFAs & NFAs

Let us build DFAs over the alphabet {0, 1} to recognize strings that:
m begin with 0;
m end with 1;
m either begin or end with 1;
m begin with 1 and contain at least one 0.

JFLAP

21/21

Next week. . .

Surprise: NFAs recognize exactly the same languages as DFAs!

Models of
Computation:
DFAs & NFAs

JFLAP

21/21

	Decision problems
	Languages
	Language recognition
	Terminology

	Models of Computation
	DFAs
	Example
	Informal definition
	Important rules
	JFLAP
	Formal definition
	Example
	Notation: Functions

	NFAs
	Power set
	Informal description
	Formal definition
	Examples
	JFLAP

