

Introduction — Problems!

Dr Kamal Bentahar

School of Science, Coventry University

Lecture 1

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

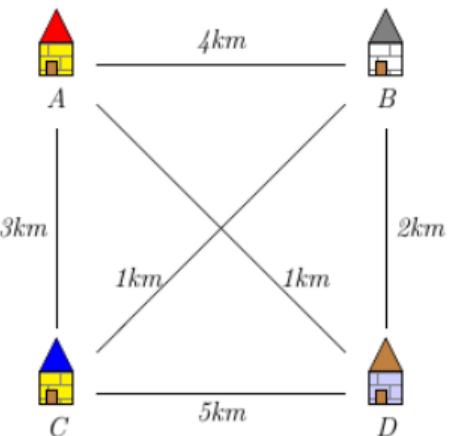
Greek alphabet

Numeric

Logic

Set

Set and logic


Functions

Strings

Graphs

Next...

Travelling Salesman Problem

Shortest tour?

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

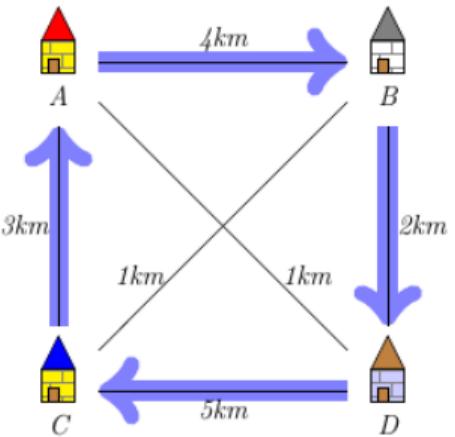
Greek alphabet

Numeric

Logic

Set

Set and logic


Functions

Strings

Graphs

Next...

Travelling Salesman Problem

$$4 + 2 + 5 + 3 = 14$$

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

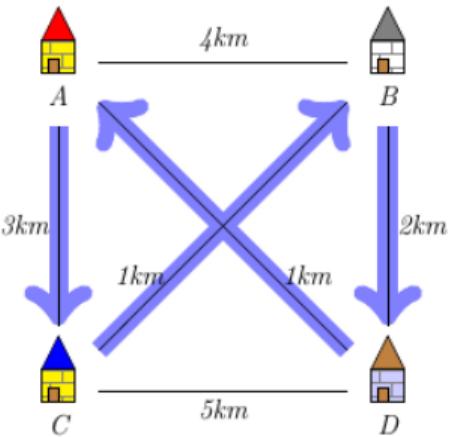
Greek alphabet

Numeric

Logic

Set

Set and logic


Functions

Strings

Graphs

Next...

Travelling Salesman Problem

$$3 + 1 + 2 + 1 = 7$$

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

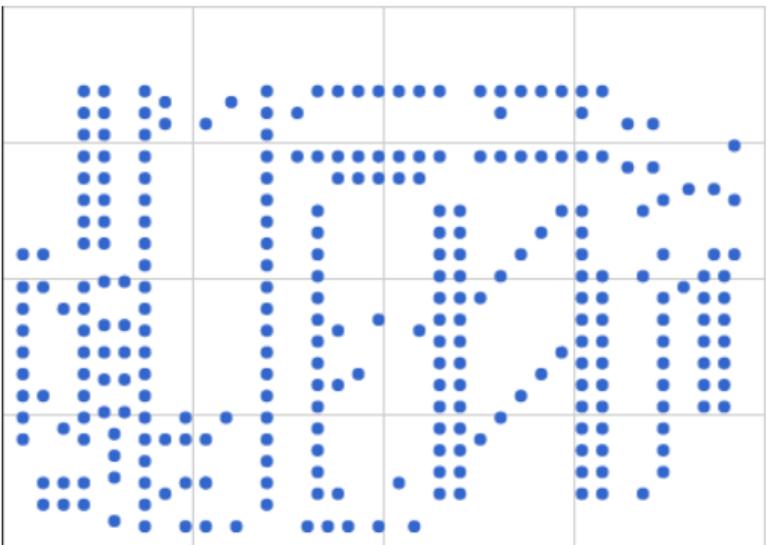
Greek alphabet

Numeric

Logic

Set

Set and logic


Functions

Strings

Graphs

Next...

Travelling Salesman Problem

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

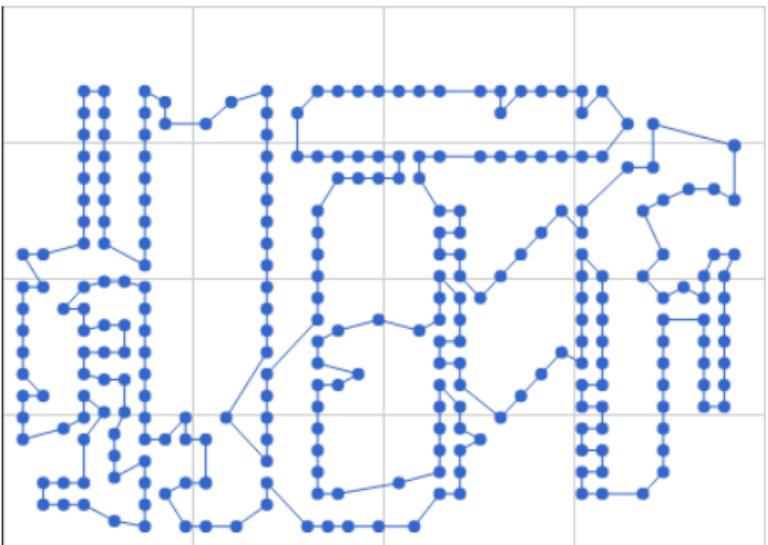
Greek alphabet

Numeric

Logic

Set

Set and logic


Functions

Strings

Graphs

Next...

Travelling Salesman Problem

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

Greek alphabet

Numeric

Logic

Set

Set and logic

Functions

Strings

Graphs

Next...

Travelling Salesman Problem

- One of the most famous problems in CS.

*Given a **list of cities** and the **distances between each pair of cities**, what is the shortest possible route that visits each city and returns to the origin city?*

- “NP-hard” problem!

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

Greek alphabet

Numeric

Logic

Set

Set and logic

Functions

Strings

Graphs

Next...

Travelling Salesman Problem – what is the issue?

Number of cities n	Number of paths $(n - 1)!/2$
3	1
4	3
5	12
6	60
7	360
8	2,520
9	20,160
10	181,440
15	43,589,145,600
20	6.082×10^{16}
71	5.989×10^{99}

Some fun
problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification
of problems

Search problems

Types of problems

Problems vs
Instances

Notation

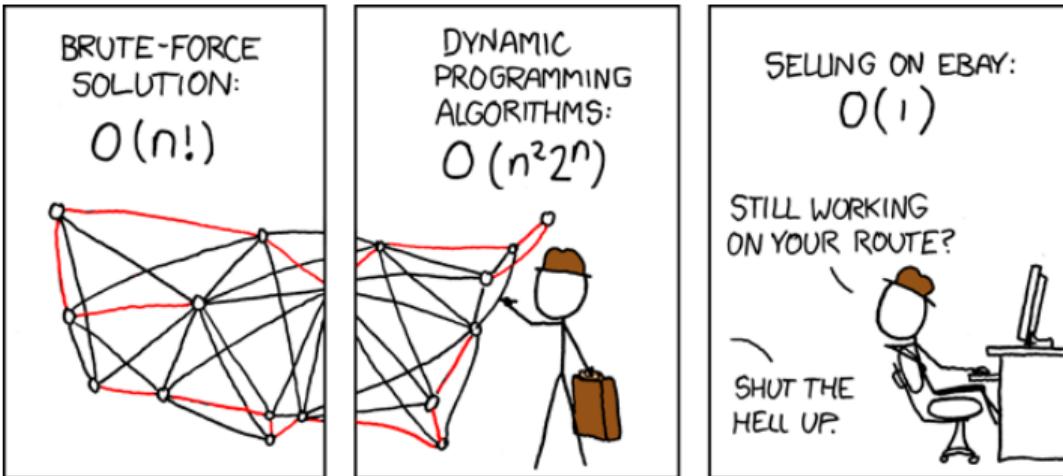
Greek alphabet

Numeric

Logic

Set

Set and logic


Functions

Strings

Graphs

Next...

Travelling Salesman Problem – what is the issue?

Some fun
problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification
of problems

Search problems

Types of problems

Problems vs
Instances

Notation

Greek alphabet

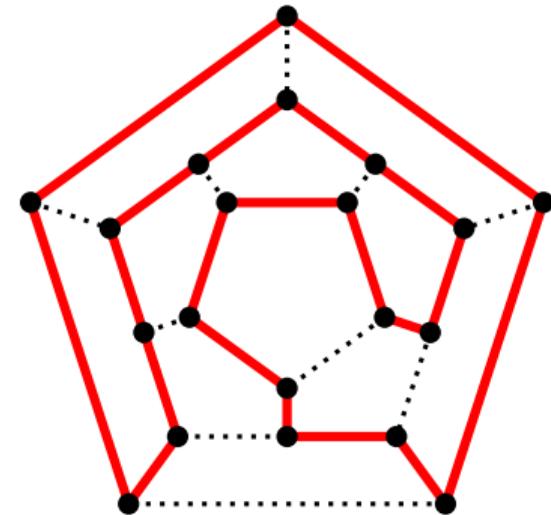
Numeric

Logic

Set

Set and logic

Functions



Strings

Graphs

Next...

Icosian Game – Hamiltonian Cycle Problem

by the Irish mathematician William Hamilton (1805–1865)

Problem (Hamiltonian Cycle)

Given a graph, decide if it contains a path that visits every vertex exactly once and terminates at the same starting vertex.

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

Greek alphabet

Numeric

Logic

Set

Set and logic

Functions

Strings

Graphs

Next...

Subset-Sum Problem

Problem (Subset-Sum Problem)

Given a set $S = \{x_1, x_2, \dots, x_n\}$ of integers, and an integer t (called target) decide if there is a subset of S whose sum is equal to t .

Example

Given the set $S = \{2, 3, 5, 7, 11, 13\}$, decide if there is a subset of S whose sum is 15.

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

Greek alphabet

Numeric

Logic

Set

Set and logic

Functions

Strings

Graphs

Next...

Partition Problem

Problem (Partition Problem)

Given a set $S = \{x_1, x_2, \dots, x_n\}$ of numbers, decide if it can be partitioned into two sets such that they both have the same sums.

Example

Given the set $S = \{2, 3, 5, 7, 11, 13\}$, is it possible to split it into 2 sets with equal sums?

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

Greek alphabet

Numeric

Logic

Set

Set and logic

Functions

Strings

Graphs

Next...

Some more examples

Problem (Cliques)

Given a graph and an integer k , decide if it contains a clique with k vertices.

A clique in a graph is a set of vertices for which any two are connected.

Problem (A Diophantine quadratic equation)

Given three positive integers a, b, c , decide if the equation $ax^2 + by = c$ has a solution in positive integers.

Problem (Satisfiability)

*Given a Boolean expression, decide if there is a way of assigning the values **true** and **false** to the variables so that the expression is **true**.*

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

Greek alphabet

Numeric

Logic

Set

Set and logic

Functions

Strings

Graphs

Next...

A needle in a haystack — a search problem

Problem:

Given any (finite) haystack H , decide whether H contains a needle.

Exhaustive Search

Search every location within the haystack, in some order, and terminate answering **yes** if a needle is found.

If the search is *completed* with no needle found then terminate answering **no**.

This problem is a **decision problem**: given some data (the haystack) decide if the data has a certain property (needle containment).

We may divide all possible instances of the problem into **yes-instances** and **no-instances** using our process.

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

Greek alphabet

Numeric

Logic

Set

Set and logic

Functions

Strings

Graphs

Next...

Types of problems

- Decision
- Search
- Computation/Construction
- Counting
- Optimization
- ...

Important observation

As far as “Can these problems be solved at all using computation?” they can be reduced to **decision problems**.

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

Greek alphabet

Numeric

Logic

Set

Set and logic

Functions

Strings

Graphs

Next...

Problems vs Problem Instances

1 What is $1 + 1$?

→ *instance* of the problem called **Addition Problem**.

■ not interested in just $1 + 1$, but $x + y$ in general.

2 What is the shortest route across the rail network from Coventry to London?

→ *instance* of the **Shortest Path Problem**,

3 What is the shortest tour around all the universities in the UK and back to your starting point (by car say)?

→ *instance* of the **Travelling Salesman Problem**.

Problem: Generalization of a problem *instance*.

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

Greek alphabet

Numeric

Logic

Set

Set and logic

Functions

Strings

Graphs

Next...

Notation: Greek alphabet

α alpha

β beta

γ gamma

δ delta

ε epsilon

σ sigma

Σ Sigma

Γ Gamma

Some fun
problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification
of problems

Search problems

Types of problems

Problems vs
Instances

Notation

Greek alphabet

Numeric

Logic

Set

Set and logic

Functions

Strings

Graphs

Next...

Notation: Numeric

$=$ equals

\neq not equal

$<$ less than

\leq less than or equal

$>$ greater than

\geq greater than or equal

$n!$ Factorial of n : $n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1$

Some fun
problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification
of problems

Search problems

Types of problems

Problems vs
Instances

Notation

Greek alphabet

Numeric

Logic

Set

Set and logic

Functions

Strings

Graphs

Next...

Notation: Logic

Expression

 $a \wedge b$
 $a \vee b$
 $a \oplus b$
 $\neg a$ (or \bar{a})

 $a \implies b$
 $a \iff b$

Meaning

 a and b
 a or b
 a xor b

not a
 a implies b , or: if a then b
 a and b are equivalent, or: “ a if and only if b ”

Some fun
problems

TSP
Hamiltonian Cycle
Subset-Sum Problem
Partition Problem
More problems

Classification
of problems

Search problems
Types of problems

Problems vs
Instances

Notation

Greek alphabet
Numeric
Logic

Set
Set and logic
Functions
Strings
Graphs

Next...

Notation: Sets

$\{x_1, \dots, x_n\}$	Finite set consisting of the elements x_1 until x_n	Some fun problems TSP Hamiltonian Cycle Subset-Sum Problem Partition Problem More problems
\emptyset	Empty set, i.e. $\{\}$	
$x \in S$	“in”, x is a member of the set S	
$x \notin S$	“not in”, x is not a member of the set S	
$A \cup B$	Union of the two sets A and B	
$A \cap B$	Intersection of the two sets A and B	
$A - B$	Difference of the two sets A and B	
$A \times B$	Cartesian product of the two sets A and B	
$A \subset B$	A is a subset of B	
$ A $ or $\#A$	Cardinality of the set A , i.e. count of its elements	
2^A	Power set of A , i.e. set of all subsets of A	Classification of problems Search problems Types of problems Problems vs Instances Notation Greek alphabet Numeric Logic Set Set and logic Functions Strings Graphs Next...
\mathbb{N}	Natural numbers: $\{1, 2, 3, \dots\}$	
\mathbb{Z}	Integers: $\{0, 1, -1, 2, -2, 3, -3, \dots\}$	
S'	A set called “ S prime”	
	(a way of making new names)	
S'' and S'''	Sets called “ S double prime” and “ S triple prime”	

Notation: Sets and logic notation

$\{pattern \mid condition\}$

Set of items matching *pattern* and satisfying *condition*.

The \mid symbol is read “such that”

$$A \cup B = \{x \mid x \in A \vee x \in B\}$$

$$A \cap B = \{x \mid x \in A \wedge x \in B\}$$

$$A - B = \{x \mid x \in A \wedge x \notin B\}$$

$$A \times B = \{(a, b) \mid a \in A \wedge b \in B\}$$

Some fun
problems

TSP
Hamiltonian Cycle
Subset-Sum Problem
Partition Problem
More problems

Classification
of problems

Search problems
Types of problems

Problems vs
Instances

Notation

Greek alphabet
Numeric
Logic
Set
Set and logic

Functions
Strings
Graphs

Next...

Notation: Functions

$$\begin{array}{ccc} f: A & \rightarrow & B \\ & & \\ & x & \mapsto y \end{array}$$

- f is a function that takes input x from the set A and returns an element y from B .
 - We say: " f maps x to y " and write $f(x) = y$.
- A is the **domain** of f , the set of possible inputs.
- B is the **range** of f , the set of possible outputs.

Similarly

$$\begin{array}{ccc} f: X \times Y & \rightarrow & R \\ & & \\ & (x, y) & \mapsto r \end{array}$$

- f is a function that takes as input a pair (x, y) from the set $X \times Y$ and returns an element r from R .

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

Greek alphabet

Numeric

Logic

Set

Set and logic

Functions

Strings

Graphs

Next...

Notation: Strings

Notation	Meaning	Example
Σ (Sigma)	Finite set of symbols	$\Sigma = \{0, 1\}$
w	String made of symbols from Σ	010
$ w $	Length of the string w	$ 010 = 3$
ε (Epsilon)	Empty string (String with no symbols in it)	$ \varepsilon = 0$

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

Greek alphabet

Numeric

Logic

Set

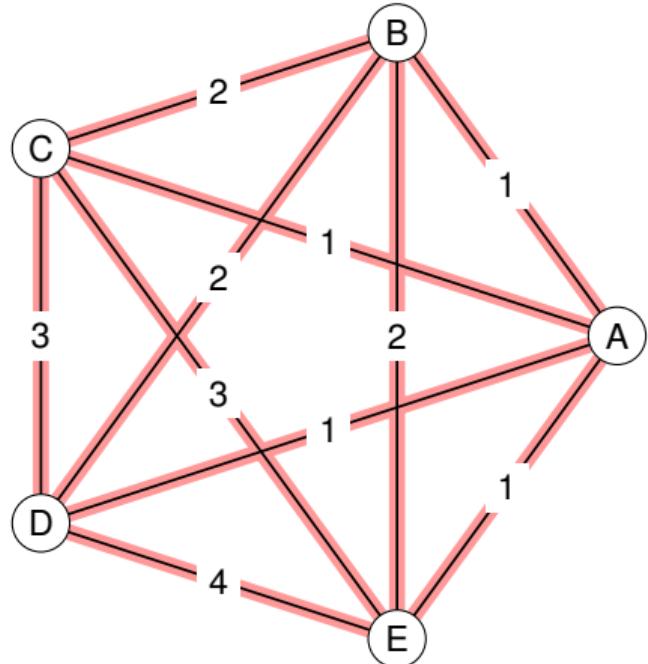
Set and logic

Functions

Strings

Graphs

Next...


Notation: Graphs

$G = (V, E)$, where

- V : the set of **vertices**.
- E : the set of **edges**.

Here:

- $V = \{A, B, C, D, E\}$
- $E = \{(A, B), (A, C), (A, D), (A, E), (B, C), (B, D), (B, E), (C, D), (C, E), (D, E)\}$

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

Greek alphabet

Numeric

Logic

Set

Set and logic

Functions

Strings

Graphs

Next...

Notation: Graphs

Graph can be:

- **directed** or **undirected**.
- **weighted** or **unweighted**.
- **labelled** or **unlabelled**.
- etc.

Properties:

- Is the graph **connected**?
- Does it contain **cycles**?
- etc.

Algorithms:

- Traversal, e.g. BFS, DFS.
- Shortest path.
- etc.

Some fun problems

TSP

Hamiltonian Cycle

Subset-Sum Problem

Partition Problem

More problems

Classification of problems

Search problems

Types of problems

Problems vs Instances

Notation

Greek alphabet

Numeric

Logic

Set

Set and logic

Functions

Strings

Graphs

Next...

Next few weeks...

What is a “computer”? What is “computation”?

Some fun problems

TSP
Hamiltonian Cycle
Subset-Sum Problem
Partition Problem
More problems

Classification of problems

Search problems
Types of problems

Problems vs Instances

Notation

Greek alphabet
Numeric
Logic
Set
Set and logic
Functions
Strings
Graphs

Next...