(1) Answer each part True or False, and briefly justify your answer.

- $2 n=O(n)$
- $\log _{10} n=O\left(\log _{2} n\right)$
- $n^{2}=O(n)$
- $n^{2}=O\left(n \log ^{2} n\right)$
- $n \log n=O\left(n^{2}\right)$
- $3^{n}=O\left(2^{n}\right)$
- $n!=O\left(n^{n}\right)$

Solution

- $2 n=O(n)$. True, $(2 n) / n=2$.
- $\log _{10} n=O\left(\log _{2} n\right)$. True, because

$$
\frac{\log _{10} n}{\log _{2} n}=\frac{\ln n / \ln 10}{\ln n / \ln 2}=\frac{\ln 10}{\ln 2} .
$$

Recall that $\log _{b} x=\ln x / \ln b$ where $\ln x$ is the natural logarithm (Base $e=2.718281828459 \ldots$)

- $n^{2}=O(n)$. False, $n^{2} / n=n \rightarrow \infty$ as $n \rightarrow \infty$.
- $n^{2}=O\left(n \log ^{2} n\right)$. False, $n^{2} /\left(n \log ^{2} n\right)=n /(\log n)^{2} \rightarrow \infty$ as $n \rightarrow \infty$.
- $n \log n=O\left(n^{2}\right)$. True, $(n \log n) / n^{2}=(\log n) / n \rightarrow 0$ as $n \rightarrow \infty$.
- $3^{n}=O\left(2^{n}\right)$. False, $3^{n} / 2^{n}=(3 / 2)^{n} \rightarrow \infty$ as $n \rightarrow \infty$ because $3 / 2>1$.
- $n!=O\left(n^{n}\right)$. True, because as $n \rightarrow \infty$ we get

$$
\frac{n!}{n^{n}}=\frac{n \cdot(n-1) \cdots 2 \cdot 1}{n \cdot n \cdots n \cdot n}=\underbrace{\frac{n}{n}}_{=1} \cdot \underbrace{\frac{n-1}{n}}_{<1} \cdots \underbrace{\frac{2}{n}}_{<1} \cdot \underbrace{\frac{1}{n}}_{<1} \rightarrow 0 .
$$

(2) Given $f(n)=O\left(n^{2}\right)$ and $g(n)=O\left(n^{3}\right)$, what is the order of $f(n)+g(n), f(n) g(n)$ and $f(g(n))$.

Solution

$$
\begin{aligned}
& f(n)+g(n)=\max \left\{O\left(n^{2}\right), O\left(n^{3}\right)\right\}=O\left(n^{3}\right) \\
& f(n) g(n)=O\left(n^{2}\right) \times O\left(n^{3}\right)=O\left(n^{2+3}\right)=O\left(n^{5}\right) \\
& f(g(n))=O\left(O\left(n^{3}\right)^{2}\right)=O\left(n^{3 \times 2}\right)=O\left(n^{6}\right)
\end{aligned}
$$

(3) Design an algorithm that, given a list of numbers, discovers if any number has occurred more than twice. (No need to write pseudocode - just the main idea.)
What is its cost? (Use O-notation).
Hint: There is an algorithm that costs $O\left(n^{3}\right)$ and a better one that only $\operatorname{costs} O(n \log n)$.

Solution

- First, sort the list using a fast algorithm costing $O(n \log n)$. We then read the sequence from start to end keeping track of any repeated elements and their number of repetitions, which costs $O(n)$.

So the total cost is $O(n \log n)+O(n)=O(n \log n)$, which is polynomial.
For example, [$4,6,1,4,3,8,7,4]$ when sorted gives $[1,3,4,4,4,6,7,8]$. We can then easily deduce that there is only one element that is repeated more than twice, namely: 4.

- The $O\left(n^{3}\right)$ solution involves nested loops to compare all possible triplets to see if they are equal.

For clarity here is pseudocode for this:
Input: A list of numbers $A=\left[x_{1}, \ldots, x_{n}\right]$.
Output: The set of numbers that are repeated more than twice in A.

```
repeated \(\leftarrow \emptyset\)
for \(i \leftarrow 1, \ldots, n\) do
    for \(j \leftarrow i+1, \ldots, n\) do
            for \(k \leftarrow j+1, \ldots, n\) do
                if \(x_{i}=x_{j}=x_{k}\) then
                    Add \(x_{i}\) to repeated
                end if
            end for
        end for
end forreturn repeated
```

The loops at lines 2,3 , and 4 each repeat for a maximum of n times. The check at line 5 costs $O(1)$, and the operation at line 6 can be done in time $O(1)$. (Ask yourself: How?)

The total maximum time is therefore $n \times n \times n \times O(1)=O\left(n^{3}\right)$.

NB.

- The time for sequential parts is the sum of the individual times.
- The time for nested parts is the product of the individual times.
(4) A triangle in an undirected graph is a 3-clique. Define the language

$$
\text { TRIANGLE }=\{\langle G\rangle \mid G \text { contains a triangle }\}
$$

Show that TRIANGLE $\in \mathbf{P}$.

Solution

Input: A graph $G=(V, E)$.
Output: True if G contains a triangle, and False otherwise.

```
for each triplet \(a, b, c\) from \(V\) do
        if \((a, b),(b, c)\) and \((c, a)\) are valid edges from \(E\) then
            return True
        end if
    end for
    return False
```

The loop goes over $\binom{n}{3}=\frac{n!}{3!(n-3)!}=\frac{1}{6} n(n-1)(n-2)=O\left(n^{3}\right)$ possibilities, and the check in line 2 costs $O(1)$.

So the total cost is $O\left(n^{3}\right) \times O(1)=O\left(n^{3}\right)$.
PS. The number of choosing k elements from n elements is

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{1}{k!} \cdot n \cdot(n-1) \cdots(n-k+1) .
$$

We read this as " n choose k." You can learn more about it at https://en. wikipedia.org/wiki/Combination
(5) A Hamiltonian path in a directed graph is a path that goes through each vertex exactly once.

HAMPATH $=\{\langle G, s, t\rangle \mid$ Directed graph G has a Hamiltonian path from s to $t\}$.

Show that $H A M P A T H \in \mathbf{N P}$.

Solution

A possible certificate to use is a feasible Hamiltonian path from s to t.
To verify we:

1) Verify that the path contains all the vertices of G.
2) Verify that the edges are valid, i.e. they really exist in G.
3) If both pass accept; otherwise reject.

For the cost, we have:

- Step 1 costs $O(n)$ where n is the number of vertices in G.
- Step 2 also costs $O(n)$ because there are $n-1$ edges in the given path.
- Step 3 costs $O(1)$.

So the total cost is $O(n)+O(n)+O(1)=O(n)$, which is polynomial.
(6) We say that two graphs G and H are isomorphic if the vertices of one of them can reordered to make it identical to the other (i.e. their adjacency matrices become the same).

Define the language

$$
I S O=\{\langle G, H\rangle \mid G \text { and } H \text { are isomorphic graphs }\}
$$

Show that $I S O \in \mathbf{N P}$.

Solution

Let $G=(E, V)$ and $H=\left(G^{\prime}, V^{\prime}\right)$ be the two graphs given by their sets of vertices (E and E^{\prime}) and edges (V and V^{\prime}).

- As a first check, the two graphs must have the same number of edges and vertices, i.e.

$$
|E|=\left|E^{\prime}\right| \quad \text { and } \quad|V|=\left|V^{\prime}\right|,
$$

otherwise they would clearly not be isomorphic.

- If G and H are indeed isomorphic then a possible certificate can be given as a renaming map that tells us how to match/pair the vertices of the two graphs.

For example, the top-left star graph below can be morphed into the bottom-right pentagon graph as follows:

The renaming map of the vertices is given by:

$$
\begin{array}{lll}
a_{1} & \mapsto & b_{1} \\
a_{2} & \mapsto & b_{4} \\
a_{3} & \mapsto & b_{2} \\
a_{4} & \mapsto & b_{5} \\
a_{5} & \mapsto & b_{3}
\end{array}
$$

- Given such a certificate, we then have to check that the edges for each pair of vertices match. That is to say: if the vertices $a_{i}, a_{j} \in V$ have an edge between them, then their corresponding vertices $b_{k}, b_{\ell} \in V^{\prime}$ must also have an edge between them.

You may think that we ought to also check that if a_{i} and a_{j} are not connected then b_{k} and b_{ℓ} are not either, but it is not needed because: $|E|=\left|E^{\prime}\right|$ implies that the previous check is sufficient. (Convince yourself!)

We could have written the above more technically as follows.
Let v be a given bijective map between the vertex sets V and V^{\prime}. Then we require the following map between E and E^{\prime} to also be bijective:

$$
\underset{\text { Edge from } E}{\left(a_{i}, a_{j}\right)} \longmapsto \underset{\text { Edge from } E^{\prime}}{\left(b_{k}, b_{\ell}\right)}=(\underbrace{v\left(a_{i}\right)}_{b_{k}} \underbrace{v\left(a_{j}\right)}_{b_{\ell}}) .
$$

- Let us now estimate the cost of these checks, assuming that the various properties of the graphs are efficiently implemented.
- The first check about the sizes can be done in time $O(1)$.
- To check the validity of the edges:
(1) we iterate over each edge $\left(a_{i}, a_{j}\right) \in E$,
(2) we map it to $\left(b_{k}, b_{\ell}\right)=\left(v\left(a_{i}\right), v\left(a_{j}\right)\right)$,
(3) and then check that this is indeed in E^{\prime}.

This costs:

$$
|E| \times(\underbrace{2 \times O(1)}_{\text {for } v\left(a_{i}\right), v\left(a_{j}\right)}+\underbrace{O\left(\log \left|E^{\prime}\right|\right)}_{\text {Binary search in } E^{\prime}})=O(|E| \cdot \log |E|),
$$

because $|E|=\left|E^{\prime}\right|$. (You may find it useful to study the table at: https://en. wikipedia.org/wiki/Big_0_notation\#Orders_of_common_functions)

We conclude that the total cost is $O(1)+O(|E| \cdot \log |E|)=O(|E| \log |E|)$, which is polynomial as required.

