
Complexity
Ba

sic
(1) Answer each part True or False, and briefly justify your answer.

� 2n = O(n)

� log10 n = O(log2 n)

� n2 = O(n)

� n2 = O(n log2 n)

� n log n = O(n2)

� 3n = O(2n)

� n! = O(nn)

Solution

� 2n = O(n). True, (2n)/n = 2.

� log10 n = O(log2 n). True, because

log10 n

log2 n
=

lnn/ ln 10

lnn/ ln 2
=

ln 10

ln 2
.

Recall that logb x = lnx/ ln b where lnx is the natural logarithm (Base e = 2.718281828459 . . .).

� n2 = O(n). False, n2/n = n→∞ as n→∞.

� n2 = O(n log2 n). False, n2/(n log2 n) = n/(log n)2 →∞ as n→∞.

� n log n = O(n2). True, (n log n)/n2 = (log n)/n→ 0 as n→∞.

� 3n = O(2n). False, 3n/2n = (3/2)n →∞ as n→∞ because 3/2 > 1.

� n! = O(nn). True, because as n→∞we get

n!

nn
=

n · (n− 1) · · · 2 · 1
n · n · · ·n · n

=
n

n︸︷︷︸
=1

· n− 1

n︸ ︷︷ ︸
<1

· · · 2

n︸︷︷︸
<1

· 1

n︸︷︷︸
<1

→ 0.

(2) Given f(n) = O(n2) and g(n) = O(n3), what is the order of f(n) + g(n), f(n)g(n)
and f(g(n)).

Solution

f(n) + g(n) = max{O(n2), O(n3)} = O(n3)

f(n)g(n) = O(n2)×O(n3) = O(n2+3) = O(n5)

f(g(n)) = O
(
O(n3)

2
)
= O(n3×2) = O(n6)

1

Complexity

(3) Design an algorithm that, given a list of numbers, discovers if any number has
occurred more than twice. (No need to write pseudocode – just the main idea.)

What is its cost? (Use O-notation).

Hint: There is an algorithm that costs O(n3) and a better one that only costs O(n log n).

Solution

� First, sort the list using a fast algorithm costing O(n log n). We then read
the sequence from start to end keeping track of any repeated elements
and their number of repetitions, which costs O(n).

So the total cost is O(n log n) +O(n) = O(n log n), which is polynomial.

For example, [4, 6, 1, 4, 3, 8, 7, 4] when sorted gives [1, 3, 4, 4, 4, 6, 7, 8]. We
can then easily deduce that there is only one element that is repeated more
than twice, namely: 4.

� The O(n3) solution involves nested loops to compare all possible triplets
to see if they are equal.

For clarity here is pseudocode for this:

Input: A list of numbers A = [x1, . . . , xn].
Output: The set of numbers that are repeated more than twice in A.

1: repeated← ∅
2: for i← 1, . . . , n do
3: for j ← i+ 1, . . . , n do
4: for k ← j + 1, . . . , n do
5: if xi = xj = xk then
6: Add xi to repeated
7: end if
8: end for
9: end for

10: end forreturn repeated

The loops at lines 2, 3, and 4 each repeat for a maximum of n times.
The check at line 5 costs O(1), and the operation at line 6 can be done
in time O(1). (Ask yourself: How?)

The total maximum time is therefore n× n× n×O(1) = O(n3).

NB.

� The time for sequential parts is the sum of the individual times.

� The time for nested parts is the product of the individual times.

2

Complexity

(4) A triangle in an undirected graph is a 3-clique. Define the language

TRIANGLE = {〈G〉 | G contains a triangle}

Show that TRIANGLE ∈ P.

Solution

Input: A graph G = (V,E).
Output: True if G contains a triangle, and False otherwise.

1: for each triplet a, b, c from V do
2: if (a, b), (b, c) and (c, a) are valid edges from E then
3: return True
4: end if
5: end for
6: return False

The loop goes over
(
n
3

)
= n!

3!(n−3)! =
1
6n(n−1)(n−2) = O(n3) possibilities, and

the check in line 2 costs O(1).

So the total cost is O(n3)×O(1) = O(n3).

PS. The number of choosing k elements from n elements is(
n

k

)
=

n!

k!(n− k)!
=

1

k!
· n · (n− 1) · · · (n− k + 1).

We read this as “n choose k.” You can learn more about it at https://en.
wikipedia.org/wiki/Combination

(5) A Hamiltonian path in a directed graph is a path that goes through each vertex
exactly once.

HAMPATH = {〈G, s, t〉 | Directed graph G has a Hamiltonian path from s to t}.

Show that HAMPATH ∈ NP.

Solution

A possible certificate to use is a feasible Hamiltonian path from s to t.

To verify we:

1) Verify that the path contains all the vertices of G.

2) Verify that the edges are valid, i.e. they really exist in G.

3) If both pass accept; otherwise reject.

For the cost, we have:

� Step 1 costs O(n) where n is the number of vertices in G.

� Step 2 also costs O(n) because there are n− 1 edges in the given path.

� Step 3 costs O(1).

So the total cost is O(n) +O(n) +O(1) = O(n), which is polynomial.

3

https://en.wikipedia.org/wiki/Combination
https://en.wikipedia.org/wiki/Combination

Complexity

(6) We say that two graphs G and H are isomorphic if the vertices of one of them can
reordered to make it identical to the other (i.e. their adjacency matrices become the
same).

Define the language

ISO = {〈G,H〉 | G and H are isomorphic graphs}

Show that ISO ∈ NP.

Solution

Let G = (E, V) and H = (G′, V ′) be the two graphs given by their sets of
vertices (E and E′) and edges (V and V ′).

� As a first check, the two graphs must have the same number of edges and
vertices, i.e.

|E| = |E′| and |V | = |V ′|,

otherwise they would clearly not be isomorphic.

� If G and H are indeed isomorphic then a possible certificate can be given
as a renaming map that tells us how to match/pair the vertices of the two
graphs.

For example, the top-left star graph below can be morphed into the bottom-right pen-
tagon graph as follows:

a1b1

a2

b4

a3

b2

a4

b5

a5

b3

a1b1

a2

b4

a3

b2

a4

b5

a5

b3

a1b1

a2

b4

a3

b2

a4

b5

a5

b3

a1b1

a2

b4
a3

b2

a4

b5

a5

b3

a1b1

a2

b4

a3

b2

a4

b5

a5

b3

a1b1

a2

b4

a3

b2

a4

b5

a5

b3

The renaming map of the vertices is given by:

a1 7→ b1
a2 7→ b4
a3 7→ b2
a4 7→ b5
a5 7→ b3

4

Complexity

� Given such a certificate, we then have to check that the edges for each
pair of vertices match. That is to say: if the vertices ai, aj ∈ V have an
edge between them, then their corresponding vertices bk, b` ∈ V ′ must
also have an edge between them.

You may think that we ought to also check that if ai and aj are not connected then bk and b` are
not either, but it is not needed because: |E| = |E′| implies that the previous check is sufficient.
(Convince yourself!)

We could have written the above more technically as follows.
Let v be a given bijective map between the vertex sets V and V ′. Then
we require the following map between E and E′ to also be bijective:

(ai, aj)

Edge from E

7−−−−→ (bk, b`)

Edge from E′

=
(
v(ai)

bk

, v(aj)

b`

)
.

� Let us now estimate the cost of these checks, assuming that the various
properties of the graphs are efficiently implemented.

– The first check about the sizes can be done in time O(1).

– To check the validity of the edges:
(1) we iterate over each edge (ai, aj) ∈ E,
(2) we map it to (bk, b`) = (v(ai), v(aj)),
(3) and then check that this is indeed in E′.

This costs:

|E| ×
(

2×O(1)

for v(ai), v(aj)

+ O(log |E′|)
Binary search in E′

)
= O(|E| · log |E|),

because |E| = |E′|. (You may find it useful to study the table at: https://en.
wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions)

We conclude that the total cost is O(1) + O(|E| · log |E|) = O(|E| log |E|),
which is polynomial as required.

5

https://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions
https://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions

