
Decidability
Ba

sic
Recall the following language definitions from the lecture:

1. Acceptance problems

1) ADFA = {〈B,w〉 | B is a DFA that accepts input string w}

2) ANFA = {〈B,w〉 | B is an NFA that accepts input string w}

3) ACFG = {〈G,w〉 | G is a CFG that generates string w}

4) ATM = {〈M,w〉 |M is a TM and M accepts w}

2. Language emptiness problems

1) EDFA = {〈A〉 | A is a DFA and L(A) = ∅}

2) ECFG = {〈G〉 | G is a CFG and L(G) = ∅}

3) ETM = {〈M〉 |M is a TM and L(M) = ∅}

3. Language equality problems

1) EQDFA = {〈A,B〉 | A and B are DFAs and L(A) = L(B)}

2) EQCFG = {〈G,H〉 | G and H are CFGs and L(G) = L(H)}

3) EQTM = {〈M1,M2〉 | M1 and M2 are TMs and L(M1) = L(M2)}

(1) This exercise is meant to help you get used to the object encoding notation.

Answer all parts for the following DFA M and give reasons for your answers.

0

1

0,1

0

1

1) Is 〈M, 0100〉 ∈ ADFA?

2) Is 〈M, 011〉 ∈ ADFA?

3) Is 〈M〉 ∈ ADFA?

4) Is 〈M〉 ∈ EDFA?

5) Is 〈M,M〉 ∈ EQDFA?

Solution

1) Is 〈M, 0100〉 ∈ ADFA? Yes. 0100 is accepted by M .

2) Is 〈M, 011〉 ∈ ADFA? No. 011 is not accepted by M .

3) Is 〈M〉 ∈ ADFA? No. Invalid encoding.

4) Is 〈M〉 ∈ EDFA? No. L(M) = {ε, 110, 100, 0100, . . .} 6= ∅.

5) Is 〈M,M〉 ∈ EQDFA? Yes. M and itself accept the same language.

1

Decidability

(2) Draw a Venn diagram to illustrate the relationship between the languages: regular,
context-free, decidable, and recognizable; then indicate where the following problems
belong to:

ADFA, EDFA, EQDFA, ANFA

ACFG, ECFG, EQCFG

ATM, ETM, EQTM

Solution

Regular

Context-free

Decidable

Recognizable

U n d e c i d a b l e

U n r e c o g n i z a b l e

ATM

ETM

EQCFG

EQTM

ADFA

EDFA

EQDFA

ANFA

ACFG

ECFG

(Whatever applies to DFAs also applies to NFAs because they are equivalent.)

2

Decidability
In

te
rm

e
d

ia
te

(3) Read about the Post Correspondence Problem (PCP) on Wikipedia: http://en.wikipedia.
org/wiki/Post_correspondence_problem.

� Is it decidable?

� How about when the alphabet is simply {a}?

� Find some (easy) examples and try to solve them by hand, e.g.{[
ab

abab

]
,

[
b

a

]
,

[
aba

b

]
,
[aa
a

]}
� Try to write code to search for solutions using exhaustive search.

Solution

PCP is undecidable.

The special case where the alphabet consists of only one symbol is decidable.

The idea is as follows:

1) All tiles that have equal top and bottom strings can be ignored.

2) If all remaining tiles have top strings longer than bottom strings then the
answer is False.

3) If all remaining tiles have top strings shorter than bottom strings then the
answer is False.

4) If less than two dominoes are left then we have a trivial case to check.

5) Pick two dominoes [xy] and [vw] such that x is longer than y, and v is shorter
than w.

Here is a sample Python script that could be used to try and find a solution
to a given PCP instance. It works by trying all the possible combinations of
length at most 20 tiles. Of course there may be a solution which requires longer
combinations, or maybe the answer is False – code cannot rule out this case.

from itertools import product

tiles = [

("ab","abab"),

("b","a"),

("aba","b"),

("aa","a"),

]

def show_tile(tiles):

’’’ Pretty print the tiles combination ’’’

top = bottom = middle = ’’

for tile in tiles:

width = max(len(tile [0]),len(tile [1]))

top += ’| ’ + tile [0]. center(width) + ’ ’

bottom += ’| ’ + tile [1]. center(width) + ’ ’

middle += ’|..’ + (’.’*width)

print(top+’|’)

print(middle+’|’)

print(bottom+’|’)

print(’\n’)

3

http://en.wikipedia.org/wiki/Post_correspondence_problem
http://en.wikipedia.org/wiki/Post_correspondence_problem

Decidability

print("The given tiles are (indexed as: {}):".format(

list(range(len(tiles)))))

show_tile(tiles)

Search all possible combinations up to length = 20

print("Solutions found so far:\n")

for length in range (1,21):

for combination in product(tiles , repeat=length):

top = bottom = ’’

for tile in combination:

top += tile [0]

bottom += tile [1]

if top == bottom:

print(len(combination),’tiles:’,[tiles.

index(t) for t in combination],’ -> ’,top)

show_tile(combination)

Here are some solutions found by the above script:

[aa
a

] [aa
a

] [b
a

] [
ab

abab

]
→ aaaabab[

ab

abab

] [
ab

abab

] [
aba

b

] [
b

a

] [
b

a

] [aa
a

] [aa
a

]
→ ababababbaaaa

[aa
a

] [aa
a

] [b
a

] [
ab

abab

] [aa
a

] [aa
a

] [b
a

] [
ab

abab

]
→ aaaababaaaabab

(4) Let AMBIGCFG = {〈G〉 | G is an ambiguous CFG}.

Show that AMBIGCFG is undecidable.

Hint: Use a reduction from PCP (above) as follows:

Given an instance {[
t1
b1

]
,

[
t2
b2

]
, · · · ,

[
tk
bk

]}
of the PCP, construct a CFG G with the rules:

S → T | B
T → t1Ta1 | · · · | tkTak | ε
B → b1Ba1 | · · · | bkBak | ε

where a1, a2, . . . , ak are new terminal symbols.

Solution

Let us reduce PCP to AMBIGCFG.

Let: {[
t1
b1

]
,

[
t2
b2

]
, · · · ,

[
tk
bk

]}
be a given instance of PCP.

Let us first consider the following grammar G designed to mimic the juxtapo-

4

Decidability

sition of the tiles (T for the top patterns, and B for the bottom patterns):

S → T | B
T → t1Ta1 | · · · | tkTak | ε
B → b1Ba1 | · · · | bkBak | ε

where a1, a2, . . . , ak are new terminal symbols used to keep track of which tiles
were used.

When a string is generated it will be of the form titjtk · · · akajai (if we start
with S → T) or bibjbk · · · akajai (if we start with S → B). If these two strings
are equal then we know they have been generated in two different ways, and
so this grammar must be ambiguous.

There is, however, a slight problem with this grammar as it allows the genera-
tion of εwhich corresponds to the empty solution of PCP. To fix this we change
G as follows (to ensure that at least one tile is used):

S → T | B
T → t1Ta1 | · · · | tkTak| t1a1 | · · · | tkak
B → b1Ba1 | · · · | bkBak| b1a1 | · · · | bkak

Now, if AMIGCFG were decidable then we would map the given PCP in-
stance to this new grammar G then use AMIGCFG’s decider to decide if G
is an ambiguous or not. If the answer is True then the PCP instance is also
solvable, otherwise it is not. But since PCP is not decidable then such a decider
cannot exist.

We conclude that AMIGCFG is not decidable.

5

Optional
O

p
tio

n
a

l
(1) Here is a Universal Turing Machines (UTM) as business card TM!

This TM is... universal with only 4 states and 6 symbols!

This TM can simulate any other TM!

→ a computer is a simple idea – it is programming it that is hard. . .

Explanation of how to use this machine can be found at: http://alvyray.com/

CreativeCommons/TuringToys.htm

(2) Business card TMs

Recall the TM from last week over Σ = {0, 1} with Q = {q, p, qaccept, qreject}, qstart =
q, Γ = {0, 1,�}, and δ:

State Tape symbol Transition
q 0 (q, 0, R)
q 1 (p, 0, R)
q � (q,�, R)

p 0 (q, 0, L)
p 1 (qaccept, 1, R)
p � (q, 0, L)

Use cardboard to make a “business card” representation of it as follows:

To use it, you would place it on the memory tape with the current cell visible
through the circular opening and the current state showing on the right, etc. as
in the previous question.

(3) “A quine is a computer program which takes no input and produces a copy of its
own source code as its only output. The standard terms for these programs in the
computability theory and computer science literature are self-replicating programs,
self-reproducing programs, and self-copying programs.” http://en.wikipedia.org/

wiki/Quine_(computing)

Write a quine in your preferred programming language.

This is related to the concept of re ion. (Find the missing letters.)

6

http://alvyray.com/CreativeCommons/TuringToys.htm
http://alvyray.com/CreativeCommons/TuringToys.htm
http://en.wikipedia.org/wiki/Quine_(computing)
http://en.wikipedia.org/wiki/Quine_(computing)

