
Context-Free Languages (CFLs)
Ba

sic

(1) Consider the following PDA

Astart B

C

D E
ε, ε→ ◦

0, ε→ •

1, • → ε

0, ε→ ε

ε, ◦ → ε

1, • → ε

1) Simulate the following strings: (For each step record: the state, the symbol just
read and the stack contents)

0001 00001 001 0011 000011

Solution

States Stack
ε {B} ◦
0 {C} ◦•
0 {B} ◦•
0 {C} ◦ • •
1 ∅ ◦ • •

rejected

States Stack
ε {B} ◦
0 {C} ◦•
0 {B} ◦•
0 {C} ◦ • •
0 {B} ◦ • •
1 {D} ◦•

rejected

States Stack States Stack
ε {B} ◦
0 {C} ◦•
0 {B} ◦•
1 {D} ◦ {E} (empty)

accepted

States Stack States Stack
ε {B} ◦
0 {C} ◦•
0 {B} ◦•
1 {D} ◦ {E}
1 ∅ ◦ ∅

rejected

States Stack States Stack
ε {B} ◦
0 {C} ◦•
0 {B} ◦•
0 {C} ◦ • •
0 {B} ◦ • •
1 {D} ◦•
1 {D} ◦ {E} (empty)

accepted

NB. I have simplified what happens at the start of the string: technically
it starts in {A,B}, and we have 2 stacks, but the one at A disappears as
soon as we read an actual symbol from the input string.

I have shown the non-determinism at {D}.

2) Use set notation to describe the language recognized by this PDA.

{ 0 2n 1 n | n ≥ 0 }

1

Context-Free Languages (CFLs)

3) Produce the formal definition for the above PDA. This should consist of:

� The set of states Q = { A , B , C , D , E }

� The input alphabet Σ = { 0 , 1 }

� The stack alphabet Γ = { ◦ , • }

� The start state qstart = A

� The set of accept states F = { A , E }

� The transition function, δ : Q× Σε × Γε → 2Q×Γε , in table form

Σε × Γε : (0, •) (0, ◦) (0, ε) (1, •) (1, ◦) (1, ε) (ε, •) (ε, ◦) (ε, ε)

→ ∗A {(B, ◦)}
B {(C, •)} {(D, ε)}
C {(B, ε)}
D {(D, ε)} {(E, ε)}
∗E

The ∅ entries have been left blank to make the table easier to read.

2

Context-Free Languages (CFLs)
Ba

sic
(2) For each of the Context-Free Grammars (CFGs) given below, give answers to the

accompanying questions (together with a brief justification where needed).

1) You are given the following CFG G defined by the productions

R → XRX | S
S → aT b | bT a

T → X TX | X | ε
X → a | b

This grammar generates all the strings over a and b that are not palindromes. A string w is
a palindrome if
w = wR, where
wR is formed
by writing the
symbols of w
in reverse or-
der, e.g. if w =
011 then wR =
110.

Answer the following questions:

1. What are the variables (non-terminals)? V = { R , S , T , X }

2. What are the terminals? Σ = { a , b }

3. What is the start variable? R

4. Give three strings in L(G) ab , ba , aab

(L(G) means: “the language of G”)

5. Give three strings not in L(G) a , b , ε

6. True or False: Notation:
→: in one step;
∗−→: in zero or

more steps

(a) T → aba

(b) T ∗−→ aba

(c) T → T

(d) T ∗−→ T

(e) XXX ∗−→ aba

(f) X ∗−→ aba

(g) T ∗−→ XX

(h) T ∗−→ XXX

(i) S ∗−→ ε

Solution

(a) T → aba: False, there is no such rule in the given set of rules.

(b) T ∗−→ aba: True, T → XTX → aTX → aTa→ aXa→ aba

(c) T → T : False, there is no such rule in the given set of rules.

(d) T ∗−→ T : True, always possible in zero steps, i.e. no replacement.

(e) XXX ∗−→ aba: True, XXX → aXX → abX → aba

(f) X ∗−→ aba: False, X can only be replaced by one terminal.

(g) T ∗−→ XX : True, T → XTX → XεX = XX

(h) T ∗−→ XXX : True, T → XTX → XXX

(i) S ∗−→ ε: False, only possible route to ε is T → ε, but from the starting
variable there is no route to T only. (aTb or bTa)

3

Context-Free Languages (CFLs)

2)

A → bbAb | B
B → aB | ε

Use the grammar to derive the following strings

bbab bbb a6 b4a3b2

Solution

� A→ bbAb→ bbBb→ bbaBb→ bbaεb→ bbab

� A→ bbAb→ bbBb→ bbεb→ bbb

� A→ B → aB → aaB → aaaB → a4B → a5B → a6B → a6ε = a6

� A→ bbAb→ bbbbAbb→ b4Bb2 → b4aBb2 → b4a2Bb2 → b4a3Bb2 →
b4aεb2 = b4a3b2

3)

S → aAbb | bBaa
A → aAbb | ε
B → bBaa | ε

Use the grammar to derive the following strings (where possible):

aabbbb bbaaaa aabb baa

Solution

� S → aAbb→ aaAbbbb→ aaεbbbb = aabbbb

� S → bBaa→ bbBaaaa→ bbεaaaa = bbaaaa

� aabb, not possible.

� S → bBaa→ bεaa = baa

4

Context-Free Languages (CFLs)
Ba

sic

4) Let Σ = {a,+,×, (,)}. The brackets
here are sym-
bols in the
alphabet, just
like a,+ and ×.

E → E + T | T
T → T × F | F
F → (E) | a

Give parse trees for each of the following strings

a a + a a× a a + a + a (a) + (a + a) ((a))

Solution

E

T

F

a

E

E

T

F

a +

T

F

a

E

T

T

F

a ×

F

a

E

E

E

T

F

a +

T

F

a +

T

F

a

E

E

T

F

(

E

T

F

a) +

T

F

(

E

E

T

F

a +

T

F

a)

E

T

F

(

E

T

F

(a))

5

Context-Free Languages (CFLs)

(3) Convert the following (G)NFAs into regular grammars.

A B C
1

0,1

0,1

Solution

A → 0A | 1A | 1B
B → 0C | 1C
C → ε

A B
aaa

a+b

Solution

A → aA | bA | aaaB
B → ε

6

Context-Free Languages (CFLs)

(4) Design a PDA and a CFG for the following language over Σ = {a, b}

L = {w | w = (ab)n or w = a4nb3n for n ≥ 0}.

Do this in two steps:

1) Explain the idea used, i.e. how does the stack help you?

2) Design a state diagram for the PDA.

3) Design a CFG.

Solution

1) Idea: union of two languages

L = {(ab)n | n ≥ 0} ∪ {(aaaa)n(bbb)n | n ≥ 0}.

Here {(ab)n | n ≥ 0} = (ab)∗ is regular – no need to use the stack for it.

For {(aaaa)n(bbb)n | n ≥ 0}: count the occurrences of the string aaaa

then match it with the number of occurrences of bbb.

2) Abbreviated PDA:

S

A B F2

A B

ε, ε→ $

ε, ε→ $

a, ε→ ε

b, ε→ ε

aaaa, ε→ •

ε, ε→ ε

bbb, • → ε

ε, $→ ε

Expanded PDA:

ε, ε→ $

ε, ε→ $

a, ε→ ε

b, ε→ ε

a, ε→ •

ε, ε→ ε

a, ε→ ε

a, ε→ ε

a, ε→ ε b, • → ε

ε, $→ ε

b, ε→ ε

b, ε→ ε

7

Context-Free Languages (CFLs)

3) CFG
S → A | B
A → abA | ε
B → aaaaBbbb | ε

(5) Design PDAs and CFGs for each of the following languages

1) {w | w = bnabn, n ≥ 0}

2) {wcwR | w ∈ {a, b}∗} (so it is defined over the alphabet {a, b, c})

3) {wwR | w ∈ {a, b}∗}

4) The language of palindromes over {a, b}

5) The language of palindromes over {a, b}whose length is a multiple of 3

Hint: Consider the even and odd length cases first.

Solution

1) {w | w = bnabn, n ≥ 0}

S → bSb | a

2) {wcwR | w ∈ {a, b}∗}

S → aSa | bSb | c

3) {wwR | w ∈ {a, b}∗}

S → aSa | bSb | ε

4) The language of palindromes over {a, b}

S → aSa | bSb | a | b | ε

5) The language of palindromes over {a, b}whose length is a multiple of 3

S → aAa | bAb | ε
A → aBa | bBb | a | b
B → aCa | bCb | aa | bb
C → S | ε

8

Context-Free Languages (CFLs)
In

te
rm

e
d

ia
te

(1) (Ambiguity) Sometimes a grammar can generate the same string in several differ-
ent ways, with several different parse trees, and likely several different meanings. If
this happens, we say that the string is derived ambiguously in that grammar, which
is then qualified as being an ambiguous grammar.

Consider the CFG
E → E + E | E × E | (E) | a

Derive the string a+a×a in two different ways using parse trees, and explain their
(different) meanings.

Now note that the following alternative CFG is not ambiguous:

E → E + T | T
T → T × F | F
F → (E) | a

What is the parse tree for the previous example string (a+ a× a)?
What is the parse tree for (a+ a)× a?

Solution

E

E

a

+ E

E

a

× E

a

E

E

E

a

+ E

a

× E

a

The first one: a+ (a× a).

The second one: (a+ a)× a.

Using the second grammar to parse a+ a× a gives

E

E

T

F

a

+ T

T

F

a

× F

a

i.e.

E

E

T

F

a +

T

T

F

a ×

F

a

and for (a+ a)× a we get

9

Context-Free Languages (CFLs)

E

T

T

F

(E

E

T

F

a

+ T

F

a

)

× F

a

i.e.

E

T

T

F

(

E

E

T

F

a +

T

F

a) ×

F

a

(2) Design CFGs generating the following languages.

1) The language of all strings over {a, b} with a single symbol ‘b’ located exactly
in the middle of the string.

{b, aba, abb, bba, bbb, aabaa, . . .}

2) The language of strings over {a, b} containing an equal number of a’s and b’s.

3) The language of strings with twice as many a’s as b’s.

4) {aibj | i, j ≥ 0 and i ≥ j}

5) {aibj | i, j ≥ 0 and i 6= j} (Complement of the language {anbn | n ≥ 0})

6) The language of strings over {a, b} containing more a’s than b’s. (e.g. abaab)

7) {w#x | w, x ∈ {0, 1}∗ and wR is a substring of x}

8) {x1#x2# · · ·#xk | k ≥ 1, each xi ∈ {a, b}∗, and for some i and j, xi = xRj }

Give informal descriptions of PDAs for the above languages. (How would you use
the stack?)

Solution

1) The language of all strings over {a, b} with a single symbol ‘b’ located
exactly in the middle of the string.

S → ASA | b
A → a | b

PDA: need to guess the middle of the string, so need non-deterministic
transition after each symbol. State before the non-deterministic transition
counts the number of prior symbols, and the one after it checks if the
number of the remaining symbols matches.

2) The language of strings over {a, b} containing an equal number of a’s and

10

Context-Free Languages (CFLs)

b’s.

S → SS | aSb | bSa | ε

PDA: string made of sub-strings/chunks that have equal symbols: if chunk
starts with a then fill stack for a’s and empty for b’s, and vice versa.

3) The language of strings with twice as many a’s as b’s.

S → SaSaSbS | SaSbSaS | SbSaSaS | ε

PDA: string made of sub-strings/chunks that have the required property:
if chunk starts with a then fill stack for a’s and empty twice for b’s, and
vice versa.

4) {aibj | i, j ≥ 0 and i ≥ j}: a∗anbn

S → AB
A → aA | ε
B → aBb | ε

PDA: fill stack one token for each a, then remove one token for each b. If
stack is not empty at the end then accept.

5) {aibj | i, j ≥ 0 and i 6= j} = {aibj | i > j} ∪ {aibj | i < j}
Think: a+anbn or anbnb+

Using variable C for anbn, A for a+, and B for b+, we get:

S → AC | CB
A → aA | a
B → Bb | b
C → aCb | ε

or

S → XbXaB | T | U
T → aTb | Tb | b
U → aUb | aU | a
X → a | b

PDA: non-deterministically create two branches at the beginning: branch #1
for the i > j case where we use the idea from the previous case; branch #2
for the i < j case where we fill stack one token for each a, then remove
one token for each b. If stack is empty before the end of the string then
accept.

6) The language of strings over {a, b} containing more a’s than b’s.

S → AaA
A → AA | aAb | bAa | aA | ε

or
S → AS | aA | aS
A → AA | aAb | bAa | ε

11

Context-Free Languages (CFLs)

This is because if a string w contains more a’s that b’s, then it must be of
one of the following forms:

� “ax” such that x contains more a’s than b’s.

� “ax” such that x contains equal number of a’s and b’s.

� “xy” such that x contains equal number of a’s and b’s, and y contains
more b’s than a’s.

7) {w#x | w, x ∈ {0, 1}∗ and wR is a substring of x}

S → TX
T → 0T0 | 1T1 | #X
X → 0X | 1X | ε

8) {x1#x2# · · ·#xk | k ≥ 1, each xi ∈ {a, b}∗, and for some i and j, xi = xRj }

S → UPV
P → aPa | bPb | T | ε
T → #MT | #
U → M#U | ε
V → #MV | ε
M → aM | bM | ε

(3) Let Σ = {a, b} and let B be the language of strings that contain at least one b in
their second half. In other words, B = {uv | u ∈ Σ∗, v ∈ Σ∗bΣ∗ and |v| ≤ |u|}.

1) Give a PDA that recognizes B.

2) Give a CFG that generates B.

Solution

PDA: We need to guess where to break the input string into uv, so we will need
non-determinism. We need to compute the length of u, then ensure that v is at
most as long as v and that it contains a b.

(4) Let
C = {x#y | x, y ∈ {0, 1}∗ and x 6= y}
D = {x#y | x, y ∈ {0, 1}∗ and |x| = |y| but x 6= y}

Show that C and D are both CFLs by producing PDAs or CFGs for them. CFLs are ac-
tually closed
under the
regular oper-
ations (union,
concatenation,
and star) but
this argument
fails to prove
closure under
star. What is
missing?

(5) Give a counter example to show that the following construction fails to prove that
the class of context-free languages (CFLs) is closed under the star operation.

Let A be a CFL that is generated by the CFG G = (V,Σ, R, S).
Add the new rule S → SS and call the resulting grammar G′.
This grammar is supposed to generate A∗.

Solution

S → SS produces multiple copies but does not produce the empty string.
It needs to be added (if it is not present in the given language), so we need:
S → SS | ε.

12

Context-Free Languages (CFLs)
A

d
va

n
c

e
d

Extend your class for simulating NFAs from lab 2 to simulate PDAs.

13

