
Lab 3a: Converting NFAs to DFAs
La

b
3a

:
C

o
nv

e
rt

in
g

N
FA

s
to

D
FA

s
(1) Consider the following NFA.

Astart

B C

0

1
0

0

1

1

1) What is its transition table?

2) Use the subset construction method to convert it to an equivalent DFA.

3) Draw the state diagram of the resulting DFA.

4) Which of the following sets of NFA states is not a state of the resulting DFA?

� {A, C} � {B, C} � {A} � {B}

Solution

1) Transition table:

0 1
→ A {A} {B}

B {A, C} ∅
* C ∅ {A, B}

2) Conversion into an equivalent DFA using the subset construction method.

0 1
→ {A} {A} {B}

{B} {A, C} ∅
* {A, C} {A} {A, B}

∅ ∅ ∅
{A, B} {A, C} {B}

3) State diagram of the resulting DFA.

{A}start

{B}

{A, C}

∅ {A, B}

0

1 0

1

0

1

0

1
0,1

4) {B, C} is not reachable from A.

1

Lab 3a: Converting NFAs to DFAs

(2) Use the subset construction method to convert the following NFA to an equivalent
DFA.

0 1
→ A {A, B} {C}

B {D} {B}
C {C} {E}

* D ∅ {D}
* E ∅ {E}

A

B

C

D

E

0

0

1

1

0

0

1

1

1

Hint: The resulting DFA has 13 states, 8 of which are accepting states.

Solution

0 1
→ {A} {A,B} {C}

{A,B} {A,B,D} {B,C}
{C} {C} {E}

* {A,B,D} {A,B,D} {B,C,D}
{B,C} {C,D} {B,E}

* {E} ∅ {E}
* {B,C,D} {C,D} {B,D,E}
* {C,D} {C} {D,E}
* {B,E} {D} {B,E}

∅ ∅ ∅
* {B,D,E} {D} {B,D,E}
* {D,E} ∅ {D,E}
* {D} ∅ {D}

2

Lab 3a: Converting NFAs to DFAs

(3) Design an NFA that accepts strings over {a, b} which end with aaa, then convert it
to an equivalent DFA.

Solution

0start 1 2 3
a

a,b

a a

a b

→ {0} {0,1} {0}
{0,1} {0,1,2} {0}
{0,1,2} {0,1,2,3} {0}

* {0,1,2,3} {0,1,2,3} {0}

(4) Design an NFA that accepts strings over {0, 1}which have 1 in the second position
from the end (e.g. 0010, 1011,10, etc.), then convert it to an equivalent DFA.

Solution

2start 1 0
1

0,1

0,1

0 1
→ {2} {2} {2,1}

{2,1} {2,0} {2,1,0}
* {2,0} {2} {2,1}
* {2,1,0} {2,0} {2,1,0}

3

Lab 3b: Regular Expressions
La

b
3b

:
Re

g
ul

a
r

Ex
p

re
ss

io
n

s
(1) Complete the descriptions of the following regular expressions (write in the shaded

boxes). Assume the alphabet Σ = {0, 1} in all the parts.

Recall that, unless brackets are used to explicitly denote precedence, the operators
precendence for the regular operations is: star, concatenation, then union.

1) 01 + 10 = { 01 , 10 }

2) (ε + 0)(ε + 1) = {ε, 0, 1, 01 }

3) (0 + ε)1∗ = 01∗ + 1∗ = {w | w has at most one zero and is at the start of w}

4) Σ∗0 = {w | w ends with a 0 } = {w | w respresents an even number in binary}

5) 0∗10∗ = {w | w contains a single 1 }

6) Σ∗0Σ∗ = {w | w has at least one 0 }

7) Σ∗001Σ∗ = {w | w contains the string 001 as a substring}

8) Σ∗000∗Σ∗ = {w | w cotains at least 2 consective 0 ’s}

9) (011∗)∗ = {w | every 0 in w is followed by at least one 1 }

10) ΣΣ + ΣΣΣ = ΣΣ(ε + Σ) = {w | the length of w is exactly 2 or 3 }

11) (ΣΣ)∗ = {w | w is a string of even length}

12) (ΣΣΣ)∗ = {w | the length of w is a multiple of 3 }

13) 0Σ∗0 + 1Σ∗1 + 0 + 1 = {w | w starts and ends with the same symbol}

(2) Produce a regular expression for the following languages over the alphabet {a, b}

1) The language La of all strings that start with a.

2) The language Lb of all strings that end with b.

3) The union La ∪ Lb.

4) The concatenation LaLb.

5) L = (La ∪ Lb)LaLb.

6) The star closure of L: L∗.

Produce ε-NFAs for each of the above using the constructions shown in the lecture
for the union, concatenation, and star.

Solution

1) La: aΣ∗

a

a,b

2) Lb: Σ∗b

a,b

b

4

Lab 3b: Regular Expressions

3) La ∪ Lb: aΣ∗ + Σ∗b

a

a,b

a,b

b

ε

ε

4) LaLb: aΣ∗Σ∗b which can be simplified to: aΣ∗b

a,b

ba

a,b

ε

5) L: (aΣ∗ + Σ∗b)aΣ∗b

a

a,b

ε

a,b

b
ε

ε

ε

a

a,b

ε

a,b

b

6) L∗ = ((La ∪ Lb)LaLb)
∗:

(
(aΣ∗ + Σ∗b)aΣ∗b

)∗

5

Lab 3b: Regular Expressions

ε

a

a,b

ε

a,b

b
ε

ε

ε

a

a,b

ε

a,b

b

ε

(3) For each of the following RegEx’s, give two strings that are members of the cor-
responding language, and two strings that are not. (A total of 4 strings for each
part.)

Assume the alphabet Σ = {a, b} in all the parts.

1) a∗b∗

2) a(ba)∗b

3) a∗ + b∗

4) (aaa)∗

5) Σ∗aΣ∗bΣ∗aΣ∗

6) aba + bab

7) (ε + a)b

8) (a + ba + bb)Σ∗

Solution

RegEx Examples Non examples
a∗b∗ a, b ba, aba.
a(ba)∗b ab, abab aab, aabb
a∗ + b∗ ε, a ab, ba
(aaa)∗ ε, aaa a, aa
Σ∗aΣ∗bΣ∗aΣ∗ aba, aaba a, ab
aba + bab aba, bab a, ab
(ε + a)b = b + ab b, ab a, ba
(a + ba + bb)Σ∗ a, ba ε, b

6

Lab 3b: Regular Expressions
La

b
3b

:
Re

g
ul

a
r

Ex
p

re
ss

io
n

s
(4) Give regular expressions generating the languages below over Σ = {0, 1}

1) {w | w begins with 1 and ends with a 0}

2) {w | w contains at least three 1’s}

3) {w | w contains the substring 0101}

4) {w | w has length at least 3 and its third symbol is 0}

5) {w | w starts with 0 and has odd length, or starts with 1 and has even length}

6) {w | w does not contain the substring 110}

7) {w | the length of w is at most 5}

8) {w | w is any string except 11 and 111}

9) {w | every odd position of w is 1}

10) {w | w contains at least two 0’s and at most one 1}

11) {ε, 0}

12) {w | w contains an even number of 0’s, or contains exactly two 1’s}

13) The empty set.

14) All strings except the empty string.

Solution

Please note that multiple solutions are possible. If yours looks different then
check if they are equivalent.

1) 1Σ∗0 (1 .0)

2) Σ∗1Σ∗1Σ∗1Σ∗ (.111)

3) Σ∗0101Σ∗ (.0101)

4) ΣΣ0Σ∗ (..0 .)

5) 0(ΣΣ)∗ + 1Σ(ΣΣ)∗ = (0 + 1Σ)(ΣΣ)∗

The first few cases for the odd length strings are:

0, 0(ΣΣ), 0(ΣΣ)(ΣΣ), . . .

and the first few cases for the even length strings are:

1Σ, 1Σ(ΣΣ), 1Σ(ΣΣ)(ΣΣ), . . .

From these two case we infer the general RegEx by taking their union.

6) (0 + 10)∗1∗

This is challenging – You can create a DFA first then use the GNFA algo-
rithm to get the required RegEx.

Once you have the expression, can you see why it works? Hint: (0 + 10)∗

gives you two types of “bricks” (0 and 10) to build your string by con-
catenation (gluing of the bricks), and these will never produce 11. Once
you have 11 then you are not allowed any 0’s, hence the part: 1∗.

—

7

Lab 3b: Regular Expressions

Another way to get to the solution is as follows:

If 110 is not a substring of a string w then there no consecutive 1’s other
than possibly at the end of w.

So w can be written as w = u` where u has no consecutive 1’s and ` is
made exclusively of zero or more 1’s.

u can be taken to be (0+10)∗ or 0∗(100∗)∗ (or any other equivalent RegEx),
while ` = 1∗.

Just because you may have found this difficult it does not mean the rest
are even harder; in fact the next one is straight forward!

7) ε + Σ + ΣΣ + ΣΣΣ + Σ4 + Σ5.

Strings of lengths: 0, 1, 2, 3, 4, 5.

8) ε+ 0+ 1+ 00+ 01+ 10+ 000+ 001+ 010+ 011+ 100+ 101+ 110+ Σ4Σ∗.

This is obtained by listing all the acceptable strings of length ≤ 3 other
than 11 and 111, then adding the option for strings of length ≥ 4.

Other equivalent expressions include:

ε + 1 + 1111Σ∗ + Σ∗0Σ∗ = (0 + 10 + 110 + 1111∗0)∗(11 + 1111∗)

9) (1Σ)∗ + (1Σ)∗1 = (1Σ)∗(ε + 1) (ε, 1, 1., 1.1, 1.1., 1.1.1, etc.)

10) 000∗ + 000∗10∗ + 0100∗ + 1000∗ = 000∗ + 0∗(001+ 010+ 100)0∗ =
0∗(00 + 001 + 010 + 100)0∗

The condition “at most one 1” means we have two cases:

� No 1 at all. This gives a string of 0s only, and since we must have “at
least two 0s” then the RegEx is: 000∗ (or any equivalent).

� Exactly one 1. We must have “at least two 0s”, and these can either:

– both be before this 1: 001

– both be after this 1: 100

– be around this 1: 010

These three possibilities give us 001+010+100, and then accounting
for any other 0s we get the Regex: 0∗(001 + 010 + 100)0∗

11) ε + 0

Simple enumeration of a finite set.

12) (1∗01∗01∗)∗ + 0∗10∗10∗

The language is a union because of the “or” in the condition:

{w | w contains an even number of 0’s} ∪ {w | w contains exactly two 1’s}

Hint: (. . .� . . .� . . .)∗, where “. . . ” contains no �s, produces strings with
0 or 2 or 4 or 6 etc. �s.

13) ∅

One of the three base cases in the definition of regular expressions.

8

Lab 3b: Regular Expressions

14) ΣΣ∗

This is also written as Σ+ as a shorthand (i.e. strings of length ≥ 1).

[Be careful: that is a “superscript plus”, not the “union plus”; e.g. 1+ + 0∗]

9

Lab 3c: NFA to GNFA to RegEx
La

b
3c

:
N

FA
to

G
N

FA
to

Re
g

Ex
Reminder: We can convert any NFA into a GNFA as follows:

� Add a new start state with an ε-transition to the NFA’s start state.
� Add a new accept state with ε-transitions from the NFA’s accept states.
� If a transition has multiple labels then replace them with their union. (e.g. a, b →
a + b.)

Once the GNFA is produced, start removing states, one at a time, and “patch” any af-
fected transitions using regular expressions (RegEx’s). Repeat until only two states (ini-
tial and accept) remain. The RegEx on the only remaining transition is the equivalent
RegEx to the NFA.

(1) Use the GNFA algorithm to find regular expressions for the languages recognized
by the following NFAs.

Can you interpret the results?

a

b

a,b

a,b

a b

a b

a,b

S

B A

D

1 1
1

1

1

Astart

B

C

D

a,b
a

b

a,b

a

b

a,b

0start

1

2

3

4

5

a

b

a

b

b

a

b

a

a

a

b

10

Lab 3c: NFA to GNFA to RegEx

Solution

Convert to GNFA:

A B
ε ε

a

b

a+b

Remove A:

B
a∗b ε

a+b

Remove B:

a∗b(a+b)∗

Convert to GNFA:

A

B

C

D
ε ε

a+b

a

b

a

b

a+b

Remove B:

A

C

D
ε ε

a+b

aa

b b

a+b

Remove C:

A D
ε ε

a+b

aa+bb

a+b

Remove A:

D
ε(a+b)∗(aa+bb) ε

a+b

Remove D:

11

Lab 3c: NFA to GNFA to RegEx

(a+b)∗(aa+bb)(a+b)∗

Convert to GNFA:

S

B A

D

ε

1 1 1

1

1

ε

Remove D:

S

B A

ε

11 1

1

1

ε

Remove A then D in succession:

S
ε

11+111

ε

Remove S:

(11+111)∗

12

Lab 3c: NFA to GNFA to RegEx

Convert to GNFA:

A

B

C

D
ε

a+b
a

b

a+b

a

b

a+b

ε

Remove B then C in succession:

A D
ε

a+b

a+b+aa+bb

a+b

ε

Remove A then D in succession:

(a+b)∗(a+b+aa+bb)(a+b)∗

Convert to GNFA:

0

1

2

3

4

5
ε

a

b

a

b

b

a

b

a

a

a

b

ε ε

Remove 2:

13

Lab 3c: NFA to GNFA to RegEx

0

1 3

4

5
ε

a+ba

a

b

b

b

a

a

b

aa

ε ε

Remove 3:

0

1

4

5
ε

a+ba

a

b

bb

a+bb

a

aa

ε ε

Remove 4:

0 1 5
ε a+ba

b+aa∗aa

bb+aa∗(a+bb)

ε ε

Remove 5:

14

Lab 3c: NFA to GNFA to RegEx

0 1
ε a+ba

b+aa∗aa

bb+aa∗(a+bb)
ε

Remove 1:

0
ε

ε + (a+ba)(b+aa∗aa)∗(bb+aa∗(a+bb))

Remove 0:

ε + (a+ba)(b+aa∗aa)∗(bb+aa∗(a+bb))

La
b

3c
:

N
FA

to
G

N
FA

to
Re

g
Ex

(2) Give RegEx’s for the languages recognized by the following similar NFAs, using
the GNFA algorithm. What do you notice?

0

1 0

1

ε

0

1 0

1

ε

0

1 0

1

ε

Solution

1 accepting state: (11 + 00)(11 + 00)∗

3 accepting states: (11 + 00)(11 + 00)∗(1 + 0 + ε) + 1 + 0

4 accepting states: (11 + 00)(11 + 00)∗(1 + 0 + ε) + 1 + 0 + ε

The RegEx for an NFA, whose accepting states include the accepting states of
another, also includes its RegEx as a sub-expression.

If all the states of an NFA are accepting then it does not necessarily mean it
accepts all possible strings.

15

Lab 3c: NFA to GNFA to RegEx

(3) Let Ln be the language of all strings over Σ = {1} that have length a multiple of n,
where n is a natural number (i.e. n ∈ N = {1, 2, 3, . . .}).

1) Design an NFA to recognize L3, and another to recognize L5.

2) Write down RegEx’s for L3 and L5, then for their union L3 ∪ L5.

3) Construct the ε-NFA that recognizes L3 ∪ L5.

4) Use the GNFA algorithm to obtain a RegEx for L3 ∪ L5.

Solution

1)

1

1

1

1

1

1

1

1

2) L3 : (111)∗ = (13)∗

L5 : (11111)∗ = (15)∗

L3 ∪ L5 : (13)∗ + (15)∗.

3) Construct the ε-NFA that recognizes L3 ∪ L5.

1

1

1

1

1

1

1

1

ε

ε

4) Use the GNFA algorithm to obtain a RegEx for L3 ∪ L5.

16

Intermediate exercises
In

te
rm

e
d

ia
te

(1) Let Bn = {am | m is a multiple of n} = {akn | k ∈ Z≥0} over the alphabet Σ = {a}.

Show that the language Bn is regular for any n ∈ N by writing a regular expression
for it.

Outline the description of an NFA that can recognize it.

Solution

RegEx: (a . . . a︸ ︷︷ ︸
n times

)∗

The corresponding NFA is a generalization of the case for L3 and L5 above. It
would have k states q0, . . . , qk−1 in a circular shape, with q0 being the initial
state and the only accepting state. Transitions for the symbol 1 go from qi to
qi+1 for i = 0, . . . , k − 2 and finally from qk−1 to q0.

(2) (Closure of regular languages under reversal of strings)

For any string s = s1s2 . . . sn, where si are symbols from the alphabet, the reverse
of s is the string s written in reverse order: sR = snsn−1 . . . s1.

Given an NFA or RegEx that recognizes a language A, describe how you can trans-
form this NFA/RegEx to recognize the language AR = {wR | w ∈ A}, i.e. the
language that contains all the strings from A but in the reverse order.

Hint: Test your ideas on the languages given by the RegEx’s: (Σ = {a, b})

a, b, aa, ab, aa + bb, ab + bb, a∗b∗, Σ∗a, aΣ∗, ab∗a∗b, (ab)∗, (aa + bb)∗, (ab + bb)∗.

Solution

Basic idea: reverse the arrows in the state diagram, but need to address the
case with many accepting states. . . etc.

(3) Convert the following ε-NFA to an equivalent DFA.

1

2 3

b ε

a

a, b

a

(4) Show that

1) 1∗∅ = ∅
(Concatenating the empty RegEx ∅ to any RegEx yields the empty RegEx again)

2) ∅∗ = {ε}

17

Intermediate exercises

You may find it helpful to construct the corresponding ε-NFAs.

Solution

1)

concat =

1 1

ε

2)

star = ε

(5) Let Σ = {0, 1} and let

D = {w | w contains an equal number of the occurrances of the substrings 01 and 10}.

As an example, 101 ∈ D but 1010 6∈ D.
Show that D is a regular language (by producing an NFA for it, or otherwise).

Does this hold for {w | w contains an equal number of 0’s and 1’s} ?
Can you see why? What is the difference!?
How about the language {w | w contains a non-equal number of 0’s and 1’s} ?

18

Intermediate exercises
O

p
tio

n
a

l

(1) (Regular Expressions in practice)

Suppose we have a programming language where comments are delimited by @=

and =@. Let L be the language of all valid delimited comment strings, i.e. a member
of L must begin with @= and end with =@.

Use the page at https://regex101.com/r/Ez1kqp/3 and try the following RegEx
searches:

Programming 380CT notation Interpreation

@ @ Just the symbol @

@= @= Just the string @=

. Σ Any symbol from the alphabet

.* Σ∗ Any string over the alphabet

@.* @Σ∗ Strings that start with @

@.*|.*@ @Σ∗ + Σ∗@ Strings that either start or end with @

@.*@ @Σ∗@ Strings that either start and end with @

@=.*=@ @=Σ∗=@ Strings that start with @= and end with =@

Interpret the results for the last 4 searches. Try alternative searches to develop your
understanding of how RegEx is used in practice. What is the correct RegEx for L?

N.B. Please note that the regular expressions used in programming languages are
more general than RegEx’s defined for Regular Languages.
See for example https://en.wikipedia.org/wiki/RE2_(software)

(2) Extend your class for simulating DFAs and NFAs from the last lab to convert a
given NFA into an equivalent DFA or to a RegEx.

19

https://regex101.com/r/Ez1kqp/3
https://en.wikipedia.org/wiki/RE2_(software)

