
Complexity
Ba

sic
Recall the problems:

SAT = {〈φ〉 | φ has at least one satisfying assignments}

and
DOUBLE-SAT = {〈φ〉 | φ has at least two satisfying assignments}

(1) For the following Boolean formulae, count how many satisfying assignments they
have, then decide if they are in SAT and DOUBLE-SAT?

• φ1 = x ∧ (y ∨ x̄) ∧ (z ∨ ȳ)

• φ2 = (x ∨ y) ∧
(
(x ∨ z) ∨ (z̄ ∧ ȳ)

)
• φ3 = (x̄ ∨ y ∨ z) ∧ (x ∨ ȳ ∨ z) ∧ (x ∨ y ∨ z̄)

Solution

Truth tables:

x y z φ1 φ2 φ3

0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 1 0
0 1 1 0 0 1
1 0 0 0 1 0
1 0 1 0 0 1
1 1 0 0 0 1
1 1 1 1 0 1

φ1 has only 1 satisfying assignment so

〈φ1〉 ∈ SAT but 〈φ1〉 6∈ DOUBLE-SAT

φ2 has 2 satisfying assignments so

〈φ2〉 ∈ SAT and 〈φ2〉 ∈ DOUBLE-SAT

φ3 has 5 satisfying assignments so

〈φ3〉 ∈ SAT and 〈φ3〉 ∈ DOUBLE-SAT

1

Complexity
Ba

sic

(2) Define

TRIPLE-SAT = {〈φ〉 | φ has at least 3 satisfying assignments}

Complete the proof below to show that TRIPLE-SAT is NP-complete.

TRIPLE-SAT is NP-complete

We need to show that TRIPLE-SAT ∈ NP and SAT ≤P TRIPLE-SAT.

1/2 TRIPLE-SAT ∈ NP:
On input 〈φ(x1, . . . , xn)〉, non-deterministically guess 3 different
assignments for the Boolean variables x1, . . . , xn, and verify whether
they all satisfy φ.
The verification step only costs O(n).

2/2 SAT ≤P TRIPLE-SAT:
On input 〈φ(x1, . . . , xn)〉, introduce 2 new Boolean variables a and b, and
output the formula:

Ψ(x1, . . . , xn, a, b) = φ(x1, . . . , xn) ∧ (a ∨ b).

• (1/2) If 〈φ〉 ∈ SAT then this means that φ has at least one
satisfying assignment, and therefore φ ∧ (a ∨ b) has at least 3
satisfying assignments because the added clause (a ∨ b) can be
satisfied in 3 ways:

(a, b) ∈ {(1, 0), (0, 1), (1,1) }.

So 〈Ψ〉 = 〈φ ∧ (a ∨ b)〉 ∈ TRIPLE-SAT.

• (2/2) If 〈φ〉 6∈ SAT then φ ∧ (a ∨ b) cannot have a satisfying
assignment because

0∧ 0 = 0 and 0∧ 1 = 0.

So 〈Ψ〉 = 〈φ ∧ (a ∨ b)〉 6∈ TRIPLE-SAT.

Therefore, SAT ≤P TRIPLE-SAT, and hence TRIPLE-SAT is NP-complete.

2

Complexity
Ba

sic

(3) Let N = {1, 2, 3, . . .} be the set of natural numbers, and define

Nt = {n ∈N | n < t} (i.e. Nt = {1, 2, . . . , t− 1})

Consider the following restricted version of the Subset-Sum Problem (SSP)

SSP = {〈S , t〉 | S (Nt is a finite set, and t ∈N, such that
there is a subset of S whose sum is t}

Here the notation “A (B” means that A ⊂ B but A 6= B.

SSP is NP-complete.

Define:

DOUBLE-SSP = { 〈S , t〉 | S ⊂Nt is a finite set, and t ∈N, such that
there are two distinct subsets of S which both sum to t}

Complete the proof below to show that DOUBLE-SSP ∈ NP-complete.

DOUBLE-SSP is NP-complete

1/2 DOUBLE-SSP ∈ NP because we can verify if 2 given subsets T1, T2

of S sum to t and check that T1 6= T2 in time O(n), which is polynomial
time.

2/2 SSP ≤P DOUBLE-SSP.
Since S (Nt then S misses at least an element m from {1, 2, 3, . . . , t− 1}.
Select such an m and build a DOUBLE-SSP instance 〈S ′, t〉where S ′ = S ∪
{m, t−m}.
• (1/2) Showing that: 〈S , t〉 ∈ SSP =⇒ 〈S ′, t〉 ∈ DOUBLE-SSP.
Since 〈S , t〉 ∈ SSP then there is a subset T ⊂ S which sums to t.
A second solution is given by {m, t−m} .

• (2/2) Showing that: 〈S ′, t〉 ∈ DOUBLE-SSP =⇒ 〈S , t〉 ∈ SSP .
If 〈S ′, t〉 ∈ DOUBLE-SSP then there are two distinct subsets T and U of S ′
that both sum to t.
T and U cannot both be {m, t−m} because they must be different . So one
of them must be a subset of S .
So, 〈S , t〉 ∈ SSP.

3

Complexity
Ba

sic

(4) Consider the following graph:

1 2

3 4

and recall that

CLIQUE = {〈G, k〉 | The graph G has a k-clique}

• What is the largest k for which this graph satisfies CLIQUE?

• In general, how many edges does a k-clique have (as a function of k)?

Solution

• There are two triangles (3-cliques): {1, 2, 3} and {2, 3, 4}. However, there is
no 4-clique, since there are only 4 nodes, and one edge is missing.

Thus k = 3 is the answer.

•All pairs of nodes must have an edge between them, and the number of pairs
of k nodes is (

k
2

)
=

k!
2!(k− 2)!

=
1
2

k(k− 1).

(5) A vertex cover of an undirected graph G is a subset of the vertices where every edge
of G touches one of those vertices.

The VERTEX-COVER problem asks whether a graph contains a vertex cover of a
specified size:

VERTEX-COVER = {〈G, k〉 | G is an undirected graph that has a k-vertex cover}.

What is the smallest k for which the graph from the previous question satisfies
VERTEX-COVER?

Solution

k = 2

1 2

3 4

4

Complexity
Ba

sic
(6) Do the following graphs have Hamiltonian circuits?

0

1

23

4

5

6

7 8

9

10

11

1213

14

15

16

17 18

19

6 0

12

3

4 5

6

5

7

4

8

3
9

2

10

1

Solution

Yes for the first one, e.g.

0− 1− 11− 12− 2− 3− 13− 14− 4− 5− 15−

16− 6− 7− 17− 18− 8− 9− 19− 10− 0.

No for the second. To visit 6 we must have 0 and 3 as its immediate neighbours.
This forces the inclusion of the path 0− 6− 3 and makes it impossible to visit
the upper vertices 1 & 3 and the lower ones 4 & 5 without revisiting 0 or 3.

Another way to also see it is to realise that we must have the paths 0− 1− 2− 3
and 0− 5− 4− 3. This makes it impossible to create a hamiltonian cycle that
also includes 6.

No for the third. (The proof is a little more involved. . . [and you were not asked for proofs])

5

Complexity
In

te
rm

e
d

ia
te

(7) Let x1, x2, . . . , xn be Boolean variables, and let φ be a Boolean formula written in
3-cnf (Conjunctive Normal Form, like φ3 in the first excercise) given by

φ = c1 ∧ c2 ∧ · · · ∧ c`,

where each clause cm has the form α ∨ β ∨ γ, where each of α, β, γ is a literal: a
variable xi or its negation x̄i.

The 3SAT problem is NP-complete, and asks if a given 3-cnf formula is satifiable.

We showed in the lecture that the Subset-Sum Problem (SSP) is in P. Now, show
that SSP is NP-complete by reducing 3SAT to it, i.e. show that

3SAT ≤P SSP

You may find it easier if you study the discussion at https://saravananthirumuruganathan.
wordpress.com/2011/02/07/detailed-discussion-on-np-completeness-of-subset-sum/

then the proof given in the textbook.

(8) Prove that CLIQUE is NP-complete by reducing the VERTEX-COVER problem to
CLIQUE. (VERTEX-COVER is NP-complete)

You can use the following reduction from VERTEX-COVER to CLIQUE:

Suppose we are given an instance 〈G, k〉 of VERTEX-COVER. Construct
the instance 〈G′, n− k〉 of CLIQUE, where n is the total number of nodes
of G, and G′ is G with the set of edges complemented (i.e. G′ has an edge
if and only if G does not have that edge).

Solution

We must show that G has a node cover of size k if and only if G′ has a clique of
size n− k.

First, let C be a node cover of G of size k. We claim that C′, the complement of
the nodes in C, is a clique in G′ of size n− k. Surely C′ is of size n− k. Suppose
it is not a clique. Then there is a pair of nodes (u, v) that do not have an edge
in G′. Thus this edge is in G. But neither u nor v is in C, contradicting the
assumption that is is a node cover.

Conversely, if C′ is a clique of size n− k in G′, then we claim that C the com-
plement of C′, is a node cover of size k in G. The argument is similar: if (u, v) is
an edge of G not covered by C, then both u and v are in C′, but the edge (u, v)
is not in G′, contradicting the assumption that C′ is a clique.

6

https://saravananthirumuruganathan.wordpress.com/2011/02/07/detailed-discussion-on-np-completeness-of-subset-sum/
https://saravananthirumuruganathan.wordpress.com/2011/02/07/detailed-discussion-on-np-completeness-of-subset-sum/

Complexity
In

te
rm

e
d

ia
te

(9) Given a graph G with an even number of vertices n, does G have an n/2-clique?

Hint: Reduce CLIQUE to HALF-CLIQUE. You need to figure out how to add ver-
tices to adjust the size of the largest clique depending on whether k = n/2 or
k > n/2 or k < n/2 (e.g., if k = n/2, just produce G).

Solution

Let (G, k) be an instance of CLIQUE, and suppose G has n vertices. We produce
an instance of the HALF-CLIQUE, as follows:

• If k = n/2, just produce G.

Note that G has a half-clique if and only if it has a clique of size k in this
case.

• If k > n/2, add 2k− n isolated vertices (vertices with no incident edges).

The resulting graph has a half-clique (whose size must be (n + (2k −
n))/2 = 2k, if and only if G has a clique of size k.

• If k < n/2, add n− 2k vertices, and connect them in all possible ways to
each other and to the original vertices of G.

The new graph thus has 2(n− k) vertices. The new vertices, plus a clique
of size k in G form a clique of size (n− 2k) + k = n− k, which is half the
number of vertices in the new graph.

Conversely, if the new graph has a half-clique, then it must include at
least (n− k)− (n− 2k) = k vertices of the graph G, implying that G has
a clique of size k.

These steps complete a reduction of CLIQUE to HALF-CLIQUE. It is evidently
performable in polynomial time, since the number of new vertices and edges is
at most the square of the original number of vertices, and the rules for adding
vertices and edges are simple to carry out.

7

Complexity
In

te
rm

e
d

ia
te

(10) Show that the class P is closed under:

• Union.

• Concatenation.

• Complementation.

Solution

Union. Test for membership in one language and then, if the input is not in
the first, test for membership in the second.

The time taken is no more than the sum of the times taken to recognize each
language. Since both ar in P, then each can be recognized in polynomial time,
and the sum of polynomials is a polynomial. Thus, their union is in P.

Concatenation. Let L1 and L2 be languages in P, and suppose we want to
recognize their concatenation.

The idea is to try all the possible ways in which we can split the string into a
concatenation of 2 strings from the given languages.

Input: A string w of length n.
Output: accept if w ∈ L1L2; reject otherwise.

1: for i← 0, . . . , n do
2: if the the first i symbols of w is in L1 and the remainder of w is in L2.

then
3: return accept . w is in L1L2
4: end if
5: end for
6: return reject

The running time of this test is at most n times the sum of the running times
of the recognizers for L1 and L2. Since the latter are both polynomials, so is the
running time for the TM just described.

Complementation. Given a polynomial-time TM M for L, we construct a TM
M′ that decides L (the complement of L) as follows:

On input w:
Run M on w.
If M accepts, reject; if M rejects, accept

Since M′ does the opposite of whatever M does then it decides L.

Furthermore, M′ also runs in polynomial time because it only needs one extra
step after M halts.

(Alternative approach: Simply swap the accept and reject state. The running time of the modi-
fied machine does not change.)

8

