Space Complexity

Dr Kamal Bentahar

School of Computing, Electronics and Mathematics Coventry University

Lecture 11

Space Complexity

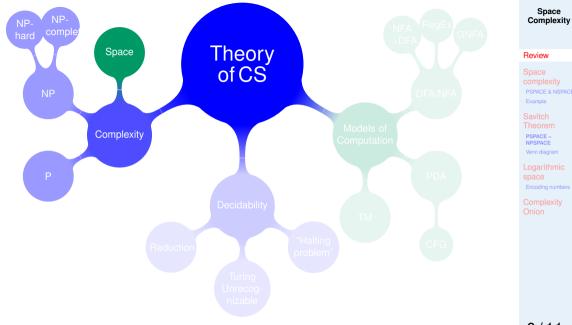
Review

Space complexity PSPACE & NSPACE

Savitch Theorem PSPACE = NPSPACE Venn diagram

Logarithmic space Encoding numbers

Complexity Onion



Last 2 lectures...

NP-complete NP-hard Р NP Decidable 2^{Σ*}

Space Complexity

Review

Space complexity PSPACE & NSPACE

Savitch Theorem PSPACE = NPSPACE Venn diagram

Logarithmic space Encoding numbers

Complexity Onion

Space complexity

We also want to measure the amount of memory used by a computation.

Space complexity

The **space complexity** of a decider \mathcal{M} is the maximum number of tape cells m(n) that \mathcal{M} scans on any input of length n.

We say that \mathcal{M} "**runs in space** m(n)" if its space-complexity is m(n).

If $\ensuremath{\mathcal{M}}$ is non-deterministic then we measure the maximum used on any branch of its computation.

Space Complexity

Review

Space complexity PSPACE & NSPACE Example

Savitch Theorem PSPACE = NPSPACE Venn diagram

Logarithmic space Encoding numbers

Space-complexity classes: SPACE and NSPACE Let $m : \mathbb{N} \to \mathbb{R}^+$ be a function.

Definitions

 $SPACE(m(n)) = \{L \mid L \text{ is a language decided by an } O(m(n)) \text{ space } DTM\}$ $NSPACE(m(n)) = \{L \mid L \text{ is a language decided by an } O(m(n)) \text{ space } NDTM\}$

DTM: Deterministic Turing Machine.
NDTM: Nondeterministic Turing Machine.

If m(n) is polynomial, then we call:

- *SPACE*(*m*(*n*)): **Polynomial space** or **polyspace** for short.
- *NSPACE(m(n)*): No-deterministic polyspace.

Space Complexity

Review

Space complexity PSPACE & NSPACE

Savitch Theorem PSPACE = NPSPACE Venn diagram

Logarithmic space Encoding numbers

Example (Computing the space cost)

Consider the following decider for SAT:

On input $\langle \phi \rangle$, where ϕ is a Boolean formula with *k* variables x_1, \ldots, x_k :

- **1** For each truth assignment of the variables x_1, \ldots, x_k of ϕ :
- 2 Evaluate ϕ on the current assignment.
- 3 If ϕ ever evaluates to *true* then *accept*; otherwise *reject*.

Let us estimate the space cost:

- Each iteration can reuse the same memory.
- Storing the current truth assignment requires *k* tape cells.
- So the total space needed is only O(k).

We need to find the total cost as a function of $n = |\langle \phi \rangle|$, the length of the input. Since we must have $k \le n$, then space cost is O(k) = O(n).

Space Complexity

Review

Space complexity PSPACE & NSPACE

Example

Savitch Theorem PSPACE = NPSPACE Venn diagram

Logarithmic space Encoding numbers

Savitch Theorem

Savitch's Theorem

For any function $m : \mathbb{N} \to \mathbb{R}^+$, where $m(n) \ge n$,

 $NSPACE(m(n)) \subseteq SPACE(m^2(n))$

This is really surprising!

When simulating NDTMs using DTMs:

- Time complexity seems to increase exponentially...
- Space complexity increases quadratically only!

This is because we can reuse space, whereas we cannot reuse time!

Space Complexity

Review

Space complexity PSPACE & NSPACE Example

Savitch Theorem

PSPACE = NPSPACE Venn diagram

Logarithmic space Encoding numbers

PSPACE vs **NPSPACE**

Definitions

PSPACE: class of languages that are decidable in polyspace on a DTM

PSPACE = $SPACE(1) \cup SPACE(n) \cup SPACE(n^2) \cup \cdots$

NPSPACE: class of languages that are decidable in polyspace on a NDTM

NPSPACE = $NSPACE(1) \cup NSPACE(n) \cup NSPACE(n^2) \cup \cdots$

By Savitch theorem, we have the surprising result:

PSPACE = **NPSPACE**

Space Complexity

Review

Space complexity PSPACE & NSPACE Example

Savitch Theorem

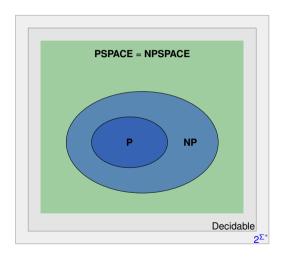
PSPACE = NPSPACE

Venn diagram

Logarithmic space Encoding numbers

Complexity Onion

$\textbf{P} \subseteq \textbf{NP} \subseteq \textbf{PSPACE}$



Space Complexity

Review

Space complexity PSPACE & NSPACE

Savitch Theorem PSPACE = NPSPACE

Venn diagram

Logarithmic space Encoding numbers

Complexity Onion

Logarithmic space

In applications such as processing "big data" we really care about the "extra space" needed.

We model this scenario as follows:

We use a 2-tape TM:

- **1** The input is read-only on the first tape.
- 2 We measure the extra space used for working on the second tape.

We then define two logarithmic space complexity classes:

L: set of problems decidable in $O(\log n)$ space on a DTM.

NL: set of problems decidable in $O(\log n)$ space on a NDTM.

Space Complexity

Review

Space complexity PSPACE & NSPACE Example

Savitch Theorem PSPACE = NPSPACE Venn diagram

Logarithmic space

Encoding numbers

Encoding numbers

In general, given a number *n*, we can represent it in two ways:

- **Unary.** We would need *n* symbols. For example, $7_{10} = ||||||_{unary}$.
- **Positional number system.** For example, $1000_{10} = 1111101000_2$. Using base *b* costs about $\log_b n$ which is $\log_2 n / \log_2 n = O(\log_2 n)$ so we just write $O(\log n)$ without specifying a base.

Example $(A = \{w \mid w = a^i b^i \text{ for } i \ge 0\})$

Let n = |w| be the size of the input. DTM specification:

- 1 Check the input is of the form a*b*.
- 2 Keep a counter in binary to count a's.
- 3 Keep a counter in binary to count b's.
- 4 Check if the two counters are equal.

Total space cost: $O(\log n)$. So, $A \in L$

No extra space is needed. $O(\log n)$ bits. $O(\log n)$ bits. No extra space is needed.

Space Complexity

Review

Space complexity PSPACE & NSPACE Example

Savitch Theorem PSPACE = NPSPACE Venn diagram

Logarithmic space Encoding numbers

How do these classes compare to each other? Define

EXPTIME = $TIME(2^n) \cup TIME(2^{n^2}) \cup TIME(2^{n^3}) \cup \cdots$ **EXPSPACE** = $SPACE(2^n) \cup SPACE(2^{n^2}) \cup SPACE(2^{n^3}) \cup \cdots$

We currently know that

 $\mathsf{L} \ \subseteq \ \mathsf{NL} \ \subseteq \ \mathsf{P} \ \subseteq \ \mathsf{NP} \ \subseteq \ \mathsf{PSPACE} \ \subseteq \ \mathsf{EXPTIME} \ \subseteq \ \mathsf{EXPSPACE}$

We also know that

 $\begin{array}{rrrr} \textbf{P} & \neq & \textbf{EXPTIME} \\ \textbf{L} & \neq & \textbf{PSPACE} \\ \textbf{PSPACE} & \neq & \textbf{EXPSPACE} \end{array}$

Space Complexity

Review

Space complexity PSPACE & NSPACE Example

Savitch Theorem PSPACE = NPSPACE Venn diagram

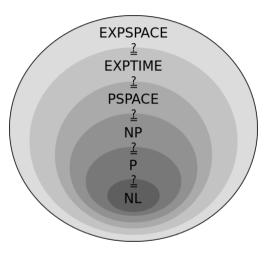
Logarithmic space Encoding numbers

Space Complexity

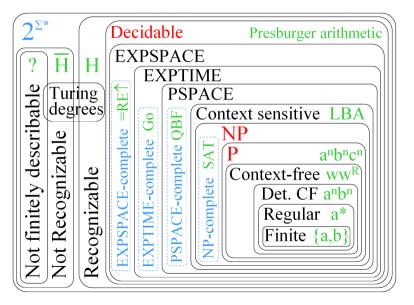
Space complexity PSPACE & NSPACE

Savitch Theorem PSPACE = NPSPACE Venn diagram

Logarithmic space Encoding number



The Extended Chomsky Hierarchy



Space Complexity

Review

Space complexity PSPACE & NSPACE

Savitch Theorem PSPACE = NPSPACE Venn diagram

Logarithmic space Encoding number

Complexity Onion