NP-Completeness

Dr Kamal Bentahar

School of Computing, Electronics and Mathematics
Coventry University

Lecture 9

NP-
Completeness

0/15

NP-
Completeness

Review

Complexity

0/15

Last time...

NP-
Completeness

Review

SAT
Cook (1971)
History

Reductions

Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems

Tackling hard
problems

0/15

NP-
Completeness

Time complexity

(TM that always halts)
The time complexity of a decider is the maximum number of steps that it
makes on any input of length n.

Review

For nondeterministic TMs consider all the branches of its computation.

Deterministic Nondeterministic
f(n) reject - f(n)

i _accept

l f/accept/reject l/ reject l

0/15

NP-

The ClaSS P Completeness

Nondeterministic Polynomial time complexity class Review

TIME(t(n)) = {Languages decided by an O(t(n)) time deterministic TM}.

The class P

Class of languages that are decidable in polytime on a deterministic TM.

P = TIME(1) U TIME(n) U TIME(n®) U TIME(n®) U -

0/15

NP-

The CIaSS NP Completeness

Nondeterministic Polynomial time complexity class Review

NTIME(t(n)) = {Languages decided by an O(t(n)) time non-deterministic TM}.

The class NP

Class of languages that are decidable in polytime on a non-deterministic TM.

NP = NTIME(1) U NTIME(n) U NTIME(n?) U NTIME(n®) U - - - .

NP is the class of languages that have polynomial time verifiers.
0/15

NP-

The Sat|Sf|ab|I|ty prOblem Completeness
m Boolean variables (true, false or 0, 1)
m Logic operations (A, V,)
m Boolean formula, e.g. SAT
X
X
XAy
xXVYy
XA X
XA (xVy)
(YVZ)A(xVYy)

m “Satisfiable” if formula can be true for some variables assignment.

The satisfiability problem (SAT)

SAT = {(¢) | ¢ is a satisfiable Boolean formula}
1/15

Link between SAT and the “P vs NP” question O ETraase
Theorem (Cook 1971)

SAT & P <= P — NP Cook (1971)

— if we can decide SAT efficiently then we can also efficiently decide any NP
problem.

2/15

HIStOFy Of SAT Com;:lI:t-eness

m Stephen Cook (1971)
Any problem in NP is transformable to SAT in polynomial time.
Efficient solution to SAT — Efficient solution to every problem in NP. History
m Richard Karp (1972)
List of 21 problems all transformable into each other in polynomial time.
m Garey and Johnson (1979)
Book “Computers and Intractability: A Guide to the theory of
NP-Completeness” lists 320 problems, all transformable into each other in
polynomial time.

m These “NP-complete” problems are the “hardest in NP.”

m |f any NP-complete problem is not in P then all of them are not in P.
(= P #NP).

3/15

NP-

Red U Ct | O n S Completeness
Idea: Transform a given problem A to another A, such that an algorithm for A’
could be used as a subroutine to solve A.

Let S = {xq,..., Xxn} be a set of integers. Reductions
A: Partition Problem (PP) A’: Subset-Sum Problem (SSP)
Can S be partitioned into two Can a subset of S sum to a given
subsets with the same sum? target t?

Given a set S for PP, we can transform it into an SSP instance as follows:
m Calculate t = (x1 +--- + Xxp)/2.
m The SSP instance is (S, t).

Solving PP has been reduced to solving SSP.
4/15

NP-

Computable fUﬂCtIOﬂS Completeness
We need the reduction to be “efficient.”

Polytime computable functions
A function f: ¥* — ¥* is a polytime computable function if some polytime TM
exists that, on input w, halts with just f(w) on its tape. oo

The function f “efficiently transforms” the encodings of the two problems.
¥ ¥

Polytime reducibility

A language A is polytime reducible to a A

language A’ if a polytime computable ;
function f: ¥* — X* exists such that

weA <« f(w)eA forallwex*

5/15

NP-

|mp|ICatI0nS Completeness

We write A <p A’ and read it: “A is (polytime) reducible to A’

This means that if A’ is known to have a polytime solution then we can
construct a polytime solution to A too. So retestens

(A<pA and AcP) = AcP

In other words, if A can be reduced to an “easy” problem A’ then A is also
Heasy.l!

6/15

NP-Completeness and NP-Hardness

NP-Hardness

A language is NP-hard if every problem
in NP is polytime reducible to it.

NP-Completeness
A language is NP-complete if it
satisfies two conditions:

itis in NP,

it is NP-hard.

The word “complete” is used to mean
that a solution to any such problem can
be applied to all others in the class.

Decidable

2Z

NP-
Completeness

NP-complete
& NP-hard

Examples
NP
NP-complete &
NP-hard

Tackling hard
problems

7/15

NP-

Examp|eS Of NP-COmplete pI’Ob|emS Completeness

The Cook-Levin Theorem

SAT is NP-complete.

m Constraint Satisfaction: SAT, 3SAT

m Numerical Problems: Subset Sum, Max Cut Bt
m Sequencing: Hamilton Circuit, Sequencing

m Partitioning: 3D-Matching, Exact Cover

m Covering: Set Cover, Vertex Cover, Feedback Set, Clique Cover,
Chromatic Number, Hitting Set

m Packing: Set Packing

8/15

NP-

How do we show a problem is in NP? Gomplotenees

How do we show a problem is in NP?

Define a certificate and the checking procedure for it.

Define the size of the input instance in terms of natural parameters.

Analyze the running time of the checking procedure. "
Verify that this time is polynomial in the input size.

9/15

NP-
Completeness

Example (SSP is in NP — Proof using a verifier)

Oninput ((S, t), c) where c is a subset of S:
m Test whether c is a collection of numbers that sum to ¢
m Test whether S contains all the numbers in ¢
m If both pass, accept; otherwise, reject

Example (SSP is in NP — Proof using nondeterminism)

NP

Oninput (S, t):
m Non-deterministically select a subset ¢ of the numbers in S
m Test whether c is a collection of numbers that sum to ¢
m If test passes, accept; otherwise, reject

10/15

NP-

How do we show a problem A is NP-complete? Gomplotenees

I
L2 Prove that A is in NP.

Reduce a known NP-complete problem C to A, i.e. C <, A:

m Define a polytime reduction.
(How an instance of C is mapped to an instance of A in polynomial time.)

m (1/2) Prove that the reduction maps yes-instances of C to yes-instances of A.
m (2/2) Prove that the reduction maps yes-instances of A to yes-instances of C. N

For NP-hardness we only need step .

11/15

NP-
Completeness

Example
The DOUBLE-SAT problem

DOUBLE-SAT = {(¢) | ¢ has at least two satisfying assignments}

12 Show that DOUBLE-SAT < NP:

NP-complete &
NP-hard

On a Boolean input formula ¢(x1, ..., Xs), check the
certificate is two different variable assignments,
and verify that both satisfy ¢.

12/15

Show that SAT <p DOUBLE-SAT:

On input (X1, ..., Xn):
m Introduce a new Boolean variable y.
m Output formula:

P(Xt, - Xn, Y) = G(X, - Xn) A (Y V).

m (1/2) If (¢(x1,...,Xn)) € SAT then ¢ has at least one satisfying
assignment, and therefore ¢)(xq, ..., Xn, y) has at least two satisfying
assignments as we can satisfy the new clause (y \ y) by assigning either
true or false to y, so (¥(xq,...,Xn,y)) € DOUBLE-SAT.

m (2/2) If (¢(xq,...,Xn,¥)) € DOUBLE-SAT, then both ¢(x1, ..., Xx,) and
(y V y¥) have to be satisfiable, so in particular (¢(x1, ..., X)) € SAT.

Therefore, SAT <p DOUBLE-SAT, and hence DOUBLE-SAT is NP-complete.

NP-
Completeness

NP-complete &
NP-hard

13/15

NP-

Opt|m|zat|on pI’Ob|emS Completeness

A decision problem has a true or false answer, whereas an optimization
problem involves maximizing or minimizing a function of several parameters.

Optimization Problems

Maximize or minimize a function of the input variables.

Optimization

m NP and NP-complete only apply to decision problems. problems
m Optimization version of a NP-complete problem is at least as hard.
m It is NP-hard (NP-hard problems do not need to be decision problems).

14/15

Useful strategies for tackling NP-hard problems

m |s it a tractable special case which can be solved quickly?

m |s a probabilistic approach or an approximation acceptable?
Try (meta-)heuristics (fast, but not always correct).

m Try exponential or sub-exponential time algorithms that are better than
exhaustive search.
For example, Dynamic Programming if possible.

NP-
Completeness

Tackling hard
problems

15/15

	Review
	SAT
	Cook (1971)
	History

	Reductions
	Computable functions
	Implications

	NP-complete & NP-hard
	Examples
	Proofs

	Optimization problems
	Tackling hard problems

