
NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

NP-Completeness

Dr Kamal Bentahar

School of Computing, Electronics and Mathematics
Coventry University

Lecture 9

0 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

Theory
of CS

Models of
Computation

DFA/NFA

NFA
→DFA

RegEx
GNFA

PDA

CFG

TM
Decidability

“Halting
problem”

Turing
Unrecog-
nizable

Reduction

Complexity

P

NP

NP-
hard

NP-
complete

0 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

Last time. . .

P NPP=NP or?

0 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

Time complexity

The time complexity of
(TM that always halts)

a decider is the maximum number of steps that it
makes on any input of length n.

For nondeterministic TMs consider all the branches of its computation.

0 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

The class P

Nondeterministic Polynomial time complexity class

TIME(t(n)) = {Languages decided by an O(t(n)) time deterministic TM}.

The class P
Class of languages that are decidable in polytime on a deterministic TM.

P = TIME(1) ∪ TIME(n) ∪ TIME(n2) ∪ TIME(n3) ∪ · · · .

0 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

The class NP

Nondeterministic Polynomial time complexity class

NTIME(t(n)) = {Languages decided by an O(t(n)) time non-deterministic TM}.

The class NP
Class of languages that are decidable in polytime on a non-deterministic TM.

NP = NTIME(1) ∪ NTIME(n) ∪ NTIME(n2) ∪ NTIME(n3) ∪ · · · .

NP is the class of languages that have polynomial time verifiers.

0 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

The satisfiability problem
Boolean variables (true, false or 0,1)
Logic operations (∧,∨,¬)
Boolean formula, e.g.

x
x̄
x ∧ y
x ∨ ȳ
x ∧ x̄
x̄ ∧ (x ∨ y)
(y ∨ z̄) ∧ (x ∨ y)

“Satisfiable” if formula can be true for some variables assignment.

The satisfiability problem (SAT)

SAT = {〈φ〉 | φ is a satisfiable Boolean formula}

1 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

Link between SAT and the “P vs NP” question
Theorem (Cook 1971)

SAT ∈ P ⇐⇒ P = NP

→ if we can decide SAT efficiently then we can also efficiently decide any NP
problem.

P NPP=NP or?

2 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

History of SAT

Stephen Cook (1971)
Any problem in NP is transformable to SAT in polynomial time.
Efficient solution to SAT =⇒ Efficient solution to every problem in NP.

Richard Karp (1972)
List of 21 problems all transformable into each other in polynomial time.
Garey and Johnson (1979)
Book “Computers and Intractability: A Guide to the theory of
NP-Completeness” lists 320 problems, all transformable into each other in
polynomial time.

These “NP-complete” problems are the “hardest in NP.”
If any NP-complete problem is not in P then all of them are not in P.
(=⇒ P 6= NP).

3 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

Reductions
Idea: Transform a given problem A to another A′, such that an algorithm for A′

could be used as a subroutine to solve A.

Example

Let S = {x1, . . . , xn} be a set of integers.

A: Partition Problem (PP)

Can S be partitioned into two
subsets with the same sum?

A′: Subset-Sum Problem (SSP)

Can a subset of S sum to a given
target t?

Given a set S for PP, we can transform it into an SSP instance as follows:
Calculate t = (x1 + · · ·+ xn)/2.
The SSP instance is 〈S, t〉.

Solving PP has been reduced to solving SSP.

4 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

Computable functions
We need the reduction to be “efficient.”

Polytime computable functions

A function f : Σ∗ → Σ∗ is a polytime computable function if some polytime TM
exists that, on input w , halts with just f (w) on its tape.

The function f “efficiently transforms” the encodings of the two problems.

Polytime reducibility

A language A is polytime reducible to a
language A′ if a polytime computable
function f : Σ∗ → Σ∗ exists such that

w ∈ A ⇐⇒ f (w) ∈ A′ for all w ∈ Σ∗

A A′

Σ∗ Σ∗

f

f

5 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

Implications

We write A ≤P A′ and read it: “A is (polytime) reducible to A′.”

This means that if A′ is known to have a polytime solution then we can
construct a polytime solution to A too. So

(A ≤P A′ and A′ ∈ P) =⇒ A ∈ P

In other words, if A can be reduced to an “easy” problem A′ then A is also
“easy.”

6 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

NP-Completeness and NP-Hardness

NP-Hardness
A language is NP-hard if every problem
in NP is polytime reducible to it.

NP-Completeness

A language is NP-complete if it
satisfies two conditions:

1 it is in NP,
2 it is NP-hard.

The word “complete” is used to mean
that a solution to any such problem can
be applied to all others in the class.

P NP

NP-complete

N P - h a r d

Decidable
2Σ∗

7 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

Examples of NP-complete problems

The Cook-Levin Theorem
SAT is NP-complete.

Constraint Satisfaction: SAT, 3SAT
Numerical Problems: Subset Sum, Max Cut
Sequencing: Hamilton Circuit, Sequencing
Partitioning: 3D-Matching, Exact Cover
Covering: Set Cover, Vertex Cover, Feedback Set, Clique Cover,
Chromatic Number, Hitting Set
Packing: Set Packing

8 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

How do we show a problem is in NP?

How do we show a problem is in NP?

1 Define a certificate and the checking procedure for it.
2 Define the size of the input instance in terms of natural parameters.
3 Analyze the running time of the checking procedure.
4 Verify that this time is polynomial in the input size.

9 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

Example (SSP is in NP – Proof using a verifier)

On input 〈〈S, t〉, c〉 where c is a subset of S:
Test whether c is a collection of numbers that sum to t
Test whether S contains all the numbers in c
If both pass, accept; otherwise, reject

Example (SSP is in NP – Proof using nondeterminism)

On input 〈S, t〉:
Non-deterministically select a subset c of the numbers in S
Test whether c is a collection of numbers that sum to t
If test passes, accept; otherwise, reject

10 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

How do we show a problem A is NP-complete?

1/2 Prove that A is in NP.
2/2 Reduce a known NP-complete problem C to A, i.e. C ≤p A:

Define a polytime reduction.
(How an instance of C is mapped to an instance of A in polynomial time.)

(1/2) Prove that the reduction maps yes-instances of C to yes-instances of A.
(2/2) Prove that the reduction maps yes-instances of A to yes-instances of C.

For NP-hardness we only need step 2/2 .

11 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

Example

The DOUBLE-SAT problem

DOUBLE-SAT = {〈φ〉 | φ has at least two satisfying assignments}

1/2 Show that DOUBLE-SAT ∈ NP:

On a Boolean input formula φ(x1, . . . , xn), check the
certificate is two different variable assignments,
and verify that both satisfy φ.

12 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

2/2 Show that SAT ≤P DOUBLE-SAT:

On input φ(x1, . . . , xn):
Introduce a new Boolean variable y .
Output formula:

ψ(x1, . . . , xn, y) = φ(x1, . . . , xn) ∧ (y ∨ ȳ).

(1/2) If 〈φ(x1, . . . , xn)〉 ∈ SAT then φ has at least one satisfying
assignment, and therefore ψ(x1, . . . , xn, y) has at least two satisfying
assignments as we can satisfy the new clause (y ∨ ȳ) by assigning either
true or false to y , so 〈ψ(x1, . . . , xn, y)〉 ∈ DOUBLE-SAT.
(2/2) If 〈ψ(x1, . . . , xn, y)〉 ∈ DOUBLE-SAT, then both φ(x1, . . . , xn) and
(y ∨ ȳ) have to be satisfiable, so in particular 〈φ(x1, . . . , xn)〉 ∈ SAT.

Therefore, SAT ≤P DOUBLE-SAT, and hence DOUBLE-SAT is NP-complete.
13 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

Optimization problems

A decision problem has a true or false answer, whereas an optimization
problem involves maximizing or minimizing a function of several parameters.

Optimization Problems

Maximize or minimize a function of the input variables.

NP and NP-complete only apply to decision problems.
Optimization version of a NP-complete problem is at least as hard.
It is NP-hard (NP-hard problems do not need to be decision problems).

14 / 15

NP-
Completeness

Review

SAT
Cook (1971)

History

Reductions
Computable
functions

Implications

NP-complete
& NP-hard
Examples

Proofs

NP

NP-complete &
NP-hard

Optimization
problems
Tackling hard
problems

Useful strategies for tackling NP-hard problems

Is it a tractable special case which can be solved quickly?
Is a probabilistic approach or an approximation acceptable?
Try (meta-)heuristics (fast, but not always correct).
Try exponential or sub-exponential time algorithms that are better than
exhaustive search.
For example, Dynamic Programming if possible.

15 / 15

	Review
	SAT
	Cook (1971)
	History

	Reductions
	Computable functions
	Implications

	NP-complete & NP-hard
	Examples
	Proofs

	Optimization problems
	Tackling hard problems

