Complexity

Dr Kamal Bentahar

School of Computing, Electronics and Mathematics Coventry University

Lecture 8

Complexity

Review

Time Time Complexity Running time

Big-O Examples

P and NP Equivalence P NP Examples

NP Solution vs Verification Verifiers & certificates Examples

The "computation universe" discovered so far...

Complexity

Time Complexity

- Being **decidable** means that an **algorithm** exists to decide the problem.
- However, the algorithm may still be *practically* ineffective because of its time and/or space cost.

Shorthands:

- **DTM:** Deterministic Turing Machine (single-tape).
- **NDTM:** Non-deterministic Turing Machine (single-tape).

Review

Time

Time Complexity Running time

Big-O Examples

P and NF

P NP Examples

NP

Solution vs Verification Verifiers & certificates Examples

Running time / Time complexity

The **running time** or **time complexity** of a DTM that always halts is the maximum number of steps f(n) that it makes on any input of length n.

We say that it "runs in time f(n)"; or that it is "an f(n)-time TM."

accept/reject

Deterministic

Complexity

Review

Time Time Complexity Running time

Big-O Examples

P and NP Equivalence P NP Examples

NP

Solution vs Verification Verifiers & certificates Examples

Running time / Time complexity

The **running time** or **time complexity** of a DTM that always halts is the <u>maximum</u> number of steps f(n) that it makes on any input of length *n*. For an NDTM consider **all the branches** of its computation.

We say that it "runs in time f(n)"; or that it is "an f(n)-time TM."

Complexity

Time Time Complexity

Running time

Big-O Examples

P and NP Equivalence P NP Examples

NP Solution Verificatio

Verifiers & certificates

Examples

Big-O notation cheat-sheet

- Constant O(1)
- Polynomial O(n), O(n²),..., O(n^k),...
 Also, O(n^a log^b n) for any positive constants a and b.
- Exponential $O(2^n), O(3^n), \ldots, O(b^n), \ldots$
- Factorial O(n!)
- *O*(*n*^{*n*})

In general

 $O(n^a) \leq O(n^a \log^b n) \leq O(n^{a+1})$

Complexity

Time Time Complexity

Big-O

(k > 1)

(b > 1)

P and NP Equivalence P NP

Example

NP

Solution vs Verification Verifiers & certificates Examples

Formal definition of big-O notation

f(n) = O(g(n)) means that, when *n* becomes "sufficiently large," f(n) becomes bounded by a multiple of g(n).

Big-O notation

Let *f* and *g* be functions

$$f, g: \mathbb{N} \to \mathbb{R}^+$$

We say that f(n) = O(g(n)) if positive integers *c* and n_0 exist such that for every integer $n \ge n_0$, f(n) < c q(n).

Alternatively, we can calculate the limit of the ratio

 $rac{f(n)}{g(n)}
ightarrow ext{constant} < \infty \quad ext{as } n
ightarrow \infty$

We say that g(n) is an **(asymptotic) upper bound** for f(n).

Complexity

Review

Time Time Complexity Running time

Big-O

Examples

P and NP Equivalence P NP Examples

Solution vs Verification Verifiers & certificates Examples

P vs NP

Example

■ n + 1 = O(n) because

$$\frac{n+1}{n} = 1 + \frac{1}{n} \to 1 \text{ as } n \to \infty$$

■ $5n^3 + 43n - 69 = O(n^3)$ because

$$\frac{5n^3 + 43n - 69}{n^3} = 5 + \frac{43}{n^2} - \frac{69}{n^3} \to 5 \text{ as } n \to \infty$$

■ $n^2 + 2^n = O(2^n)$ because

$$\frac{n^2+2^n}{2^n}=\frac{n^2}{2^n}+1 \quad \to 1 \text{ as } n \to \infty$$

Complexity

Review

Time Time Complexity Running time

Big-O Examples

P and NP Equivalence P NP Examples

NP Solution vs Verification Verifiers & certificates Examples

Example

■ $n + 1 \neq O(1)$ because

$$\frac{n+1}{1} = n+1 \quad \to \infty \text{ as } n \to \infty$$

$$\bullet 5n^3 + 43n - 69 \neq O(n) \text{ because}$$

$$\frac{5n^3 + 43n - 69}{n} = 5n^2 + 43 - \frac{69}{n} \to \infty \text{ as } n \to \infty$$

■ $n^2 + 2^n \neq O(n^2)$ because

$$\frac{n^2+2^n}{n^2} = 1 + \frac{2^n}{n^2} \to \infty \text{ as } n \to \infty$$

Complexity

Review

Time Time Complexity Running time

Big-O Examples

P and NP Equivalence P NP Examples

NP Solution vs Verification Verifiers & certificates Examples

Time complexity class

Interesting results:

Complexity relationships among TM variants

Let t(n) be a function, where $t(n) \ge n$.

Then:

- Every t(n) time multi-tape TM has an equivalent $O(t^2(n))$ time DTM.
- Every t(n) time NDTM has an equivalent $O(2^{O(t(n))})$ time DTM.

This suggests studying the difference between **deterministic** and **non-deterministic** time.

Complexity

Review

Time Time Complexity Running time

Big-O Examples

P and NP Equivalence

P NP Examples

NP

Solution vs Verification Verifiers & certificates Examples The class **P**

Deterministic Time complexity class

Let $t: \mathbb{N} \to \mathbb{R}^+$ be a function.

Define the **deterministic-time complexity class** TIME(t(n)) to be the set of languages that are decidable by an O(t(n)) time DTM.

The class **P**

P is the class of languages that are decidable in **polynomial time** on a DTM.

 $\mathbf{P} = TIME(1) \cup TIME(n) \cup TIME(n^2) \cup TIME(n^3) \cup \cdots$

Complexity

Review

Time Time Complexity Running time

Big-O Examples

P and NP Equivalence

NP Examples

NP

Solution vs Verification Verifiers & certificates Examples P vs NP The class NP

Nondeterministic Time complexity class

Let $t \colon \mathbb{N} \to \mathbb{R}^+$ be a function.

Define the **nondeterministic-time complexity class** NTIME(t(n)) to be the set of languages that are decidable by an O(t(n)) time NDTM.

The class NP

NP is the class of languages that are decidable in polynomial time on a NDTM.

 $NP = NTIME(1) \cup NTIME(n) \cup NTIME(n^2) \cup NTIME(n^3) \cup \cdots$

We will see later that **NP** can also be characterised as the class of languages that have polynomial time "**verifiers**."

Complexity

Review

Time Time Complexity Running time

Big-O Examples

P and NF

P NP Example

NP

Solution vs Verification Verifiers & certificates Examples P vs NP

P examples – path between two vertices in a graph

 $PATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t \}.$

A polynomial time algorithm for PATH

Input: $\langle G, s, t \rangle$, where *G* is a directed graph with vertices *s* and *t*. **Output:** *true* if there is a path between *s* and *t*; *false* otherwise.

1: Place a mark on vertex s.

2: repeat

- 3: Scan all the edges of G.
- 4: If an edge (*a*, *b*) is found going from a marked vertex *a* to an unmarked vertex *b*, then mark vertex *b*.
- 5: until no additional vertices are marked
- 6: If t is marked then accept else reject

Complexity

Review

Time Time Complexity Running time

Big-O Examples

P and NP Equivalence P NP Examples

NP

Solution vs Verification Verifiers & certificates Examples

vs NP

On input $\langle x, y \rangle$, where x and y are natural numbers:

1 Run *E* on $\langle x, y \rangle$.

2 If the result is 1, accept. Otherwise, reject."

NP - Solution vs Verification

Complexity

NP - Solution vs Verification

- **Solving**: finding/searching for a solution.
- Verifying: confirming that a proposed solution is correct.

Example

Given a candidate for a tour around England, we just need to check if it:

- 1 contains all the required cities
- 2 uses no city more than once
- 3 finishes at its starting point
- uses only valid routes

Complexity

Review

Time Time Complexity Running time

Big-O Examples

> P and NP Equivalence P NP Examples

NP

Solution vs Verification Verifiers & certificates

NP – verifiers

A verifier for a language L is an algorithm V, where

 $L = \{w \mid V \text{ accepts } \langle w, c \rangle \text{ for some certificate string } c \}.$

A polynomial time verifier runs in polynomial time in the length of w.

A language is polynomially verifiable if it has a polynomial time verifier.

Verifiers

Complexity

I IME Time Complexity Running time

Big-O Examples

P and NP Equivalence P NP Examples

NP Solution vs Verification Verifiers & certificates Examples

vs NP

NP examples – Subset Sum Problem

 $SUBSETSUM = \{ \langle S, t \rangle \mid S = \{x_1, \dots, x_n\} \text{ is a set of positive integers} \\ \text{and } t = y_1 + \dots + y_\ell \text{ for some } \{y_1, \dots, y_\ell\} \subseteq S \}.$

Verifier: "On input $\langle \langle S, t \rangle, c \rangle$:

- 1 Test whether *c* is a subset of *S*.
- **2** Test whether the sum of the numbers from *c* is *t*.
- If both pass, accept. Otherwise, reject."

Alternatively, polynomial time NDTM: "On input $\langle S, t \rangle$:

- Non-deterministically select a subset c of the numbers in S.
- **2** Test whether the sum of the numbers from *c* is *t*.
- 3 If the test passes, accept. Otherwise, reject."

Complexity

Review

Time Time Complexity Running time

Big-O Examples

P and NF Equivalence P NP Examples

Solution vs Verification Verifiers & certificates Examples

NP examples – Cliques in a graph

Cliques

A **clique** in an undirected graph is a subgraph, wherein every two vertices are connected by an edge.

A *k*-clique is a clique that contains *k* vertices.

 $CLIQUE = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with a } k \text{-clique} \}.$

- Verifier for *CLIQUE*: "On input $\langle \langle G, k \rangle, c \rangle$:
 - **1** Test whether c is a subgraph with k vertices in G.
 - 2 Test whether G contains all the required edges to make c a clique.
 - If both pass, accept. Otherwise, reject."

Alternatively, polynomial time NDTM: "On input $\langle G, k \rangle$, where G is a graph:

- 1 Non-deterministically select a subset *c* of *k* vertices of *G*.
- 2 Test whether G contains all the required edges to make c a clique.
- If yes, accept; otherwise, reject."

Complexity

Review

Time Time Complexity Running time

Big-O Examples

P and NP Equivalence P NP Examples

IP Solution Verification

Verifiers & certificates

Examples

Summary

Ρ

Class of languages that are decidable in polynomial time by a DTM.

$$\mathbf{P} = \bigcup_{k \ge 0} TIME(n^k).$$

Polynomial-time

BIG-O Examples P and NP Equivalence P

NP

NP

Nondeterministic Polynomial time

Class of languages that are decidable in polynomial time by a NDTM.

$$\mathsf{NP} = \bigcup_{k>0} NTIME(n^k).$$

Also: Class of languages that have polynomial time (DTM) verifiers.

P vs NP

16/17

Complexity

