Turing Machines (TMs)

Dr Kamal Bentahar

School of Computing, Electronics and Mathematics Coventry University

Lecture 6

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

Decidable & Recognizable Venn diagram

Specification Example Formal Definition

Generalization: Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Last week... Grammars/Chomsky Hierarchy

Review

Grammar	Languages	Automaton	Production rules		Exam
Туре-0	Recursively Enumerable	Turing Machine (TM)	$\alpha \rightarrow \beta$	(no restrictions)	TM Comp
Type-1	Context Sensitive	Linear-bounded TM	$\alpha A \beta \rightarrow \alpha \gamma \beta$		Dec
Type-2	Context Free	PDA	${oldsymbol{A}} ightarrow\gamma$		Rec
Type-3	Regular	NFA/DFA	$A ightarrow aB \mid a$		Venn

- *a*, *b*, . . . Terminals constitute the strings of the language
- A, B, ... Non-terminals should be replaced
- α, β, \ldots Combinations of the above

What is computation? Effective methods History Church-Turing Thesis Algorithms

Multi-tape

TMs in real life

Turing Machine (TM)

- Similar to NFA/PDA, but has unrestricted access to unlimited memory.
- No known model of computation is more powerful than the TM model.

The main differences are:

- **1** TMs may store the entire input string and refer to it **as often as needed**.
- 2 Dedicated states for accepting and rejecting which take immediate effect. (No need to reach the end of the input string.)
- 3 → TMs have the potential to go on for ever, without reaching either an accept or reject state.
 (→ "Halting Problem".)

Turing Machines (TMs)

Review

Turing Machines

Example TM Computation

Decidable & Recognizable Venn diagram

Specification Example Formal Definition

Generalization Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Example (TM to recognize $\{w \# w \mid w = \{0, 1\}^*\}$)

- Scan the input to check it contains only a single # symbol.
 If not then reject.
- Zig-zag across the tape to corresponding symbols on either side of the # symbol, crossing off each matching pair.
 If they do not match then reject.
- When all symbols to the left of the # are crossed off, check for any remaining symbols to the right. If there are then reject, otherwise accept.

Task: Trace the TM on the following inputs:

01#01 011#01 01#011

01##01

Turing Machines (TMs)

Review

Turing Machines Example

Computation

Decidable & Recognizable Venn diagram

Specification Example Formal Definition

Generalizations Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Turing Machine (TM)

- TM has an infinite tape (memory), divided into cells.
- It has a tape head, which may read and write symbols and move around.
- Initially: tape contains only the input string (blank everywhere else).
- If the TM needs to store information, it can write it on the tape.
- It has designated **accept** and **reject** states.

Can only terminate on reaching one or the other; otherwise, it will just keep going!

- **Transition function** δ : Given a (*state, symbol*) pair, the TM will:
 - 1 change state,
 - 2 write a symbol (in the current cell)
 - 3 and move left or right (by one cell).

Turing Machines (TMs)

Review

Turing Machines Example

тм

Computation

Decidable & Recognizable Venn diagram

Specification Example Formal Definition

Generalization Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Turing Machine Computation

- Input is placed on tape; rest of the tape is blank.
- Head starts on the leftmost cell of the input.
- Computation proceeds according to the rules of δ .
- Computation continues until it enters either an **accept** or **reject** state.

Configuration – notation

The snapshot of the tape and head at a given time is called a **configuration**.

Notation: uqv

- u: string to left of head.
- q: current state.
- v: string to right of head including the current head location.

e.g. tape contains 10010, TM is in state q_6 , and head is over the second zero \rightarrow write: $10q_6010$

Turing Machines (TMs)

Review

Turing Machines Example TM

Computation

Decidable & Recognizable Venn diagram

Specification Example Formal Definition

Generalizations Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Decidable and recognizable languages

Decidable languages

A language is **decidable** if some TM **decides** it. Namely, given a string w:

- if w is in the language then the TM will accept it.
- it w is not in the language then the TM will reject it.

Such TMs are called deciders.

Recognizable languages

A language is **recognizable** if some TM **recognizes** it. Namely, given a string *w*:

- if w is in the language: the TM will accept it.
- it w is not in the language then the TM may reject it or never halt.

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

Decidable & Recognizable

Venn diagram

Specification Example Formal Definition

Generalization Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

The "computation universe" discovered so far...

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

Decidable & Recognizable Venn diagram

Specification Example Formal Definition

Generalization Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Chomsky Hierarchy The Extended Chomsky Hierarchy

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

Recognizable Venn diagram

Specification Example Formal Definition

Generalization Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Chomsky Hierarchy The Extended Chomsky Hierarchy

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

Recognizable Venn diagram

Specification Example Formal Definition

Generalization Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Chomsky Hierarchy The Extended Chomsky Hierarchy

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

Recognizable Venn diagram

Specification Example Formal Definition

Generalization Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Chomsky Hierarchy

The Extended Chomsky Hierarchy

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

Decidable & Recognizable Venn diagram

Specification Example Formal Definition

Generalization Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Description of algorithms and TMs

Three possible levels of detail:

- Formal description. Transition diagrams, etc.
- Implementation description. Describe how TM manages tape and moves head.
- 3 High-level description.
 Pseudocode or higher.

We also specify how to **encode** objects (if not obvious/standard), and the exact **input** and **output**.

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

Decidable & Recognizable Venn diagram

Specification

Example Formal Definition

Generalization Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Example ($L = \{0^{2^n} | n \ge 0\}$

This language consists of all strings of 0's whose length is a power of 2.

 $L = \{0, 00, 0000, 0000000, 0^{16}, 0^{32}, \ldots\}$

Input: String $s \in \{0\}^+$. **Output:** *true* if |s| is a power of 2; *false* otherwise.

- 1: while |s| is even do
- 2: $s \leftarrow half of s$
- 3: end while
- 4: if |s| = 1 then
- 5: return true
- 6: **else**
- 7: return false
- 8: end if

(1/3) High level)

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

Decidable & Recognizable Venn diagram

Specification

Example Formal Definition

Generalization Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Example ($L = \{0^{2^n} | n \ge 0\}$

(2/3) Implementation level)

- Scan left to right across the tape, crossing off every other 0.
- 2 If only a single 0 remains then accept.
- 3 If an odd number of 0's remain then reject.
- 4 Return to the left hand end of the tape.
- 5 Go to step 1.

Task: Trace the following inputs:

 $0, 0^2, 0^3, 0^4, 0^7$

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

Decidable & Recognizable Venn diagram

Specification

Example Formal Definition

Generalization Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Example ($L = \{0^{2^n} | n \ge 0\}$

Notation:

 $a \rightarrow b, R$: read a on the tape: replace it with b, then move to the right. (*L*: left.) a, *R*: shorthand for $a \rightarrow a, R$

Formal description:

- $Q = \{1, 2, 3, 4, 5, A, R\}$
- $\bullet \ \Sigma = \{0\}$
- $\blacksquare \ \Gamma = \{0, x, \Box\}$
- The start, accept and reject states are 1, A and R, respectively.
- δ is given by the state diagram:

(3/3) Formal description)

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

Decidable & Recognizable Venn diagram

Specification

Formal Definition

Generalization Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Formal Definition of a TM

- A Turing Machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$ where
 - Q is the finite set of states
 - **\Sigma** is the input alphabet, not containing the special *blank symbol*: \Box
 - \blacksquare Γ is the tape alphabet, where $\Box \in \Gamma$ and $\Sigma \subset \Gamma$
 - $\delta: \mathbf{Q} \times \mathbf{\Gamma} \to \mathbf{Q} \times \mathbf{\Gamma} \times \{\mathbf{R}, \mathbf{L}\}$ is the transition function
 - q_{start} is the start state
 - q_{accept} is the accept state
 - **q**_{reject} is the reject state, where $q_{\text{accept}} \neq q_{\text{reject}}$

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

> Decidable & Recognizable Venn diagram

Specification Example Formal Definition

Generalization Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Nondeterministic TMs (NTMs/NDTMs)

- For an NTM, a given *configuration* can have zero or more subsequent configurations.
 - \rightarrow TM may be in many configurations at the same time. Imagine the NTM self-replicating as it goes along.
- If an NTM is a *decider* then:
 - it accepts as soon as any branch accepts,
 - it only *rejects* if **all its branches reject**.
- Deterministic and nondeterministic TMs recognize the same languages!

Equivalence

Every NTM has an equivalent deterministic TM.

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

Decidable & Recognizable Venn diagram

Specification Example Formal Definition

Generalizations Nondeterminism Multi-tape

Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Multi-tape TMs

- A multi-tape TM is a TM with more than one tape.
- More transitions need to be defined, but it simplifies computations.

Example $(\{w \# w \mid w = \{0, 1\}^*\})$

- One-tape: Zig-zag around # crossing off matching symbols. Requires nested loops.
- Multi-tape: Write the second half in the second tape, then use a single loop to check it matches the first half.

Equivalence

Every multi-tape TM has an equivalent single-tape TM.

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

> Decidable & Recognizable Venn diagram

Specification Example Formal Definition

Generalizations Nondeterminism Multi-tape

TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

TMs in real life

• The closest we have to an NTM is **DNA computation**:

The processed units are artificially manufactured chromosomes (capable of self-replication). This still is not really nondeterministic as there is a finite limit to the number of DNA strands which may exist during computation.

 Quantum computers promise to be faster than the classical-physics machines that we currently have, but they are still equivalent to Turing Machines. Turing Machines (TMs)

Review

Turing Machines Example TM Computation

> Decidable & Recognizable Venn diagram

Specification Example Formal Definition

Generalizations Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

A computational procedure is called effective if:

- it is set out in terms of a finite number of exact instructions,
- it will produce the desired result in a finite number of steps,
- in principle, it can be carried out by a human being, unaided by any machinery except paper and pencil,

Turina

Machines (TMs)

Venn diagram

Multi-tape TMs in real life

Effective methods

17/20

it demands no insight, intuition, or ingenuity, on the part of the human carrying out the procedure.

History — Nature of computing

Questions about this first arose in the context of pure Mathematics:

- Gottlob Frege (1848–1925)
- David Hilbert (1862–1943)
- George Cantor (1845–1918)
- Kurt Gödel (1906–1978)

1936:

- Gödel and Stephen Kleene (1909-1994): Partial Recursive Functions
- Gödel, Kleene and Jacques Herbrand (1908–1931)
- Alonzo Church (1903–1995): Lambda Calculus
- Alan Turing (1912–1954): Turing Machine
- 1943: Emil Post (1897–1954): Post Systems
- 1954: A.A. Markov: Theory of Algorithms Grammars
- 1963: Shepherdson and Sturgis: Universal Register Machines

Equivalence of all of these models \rightarrow "Church-Turing Thesis"

All these models define exactly the same class of computable functions! \rightarrow Anything that is computable can be computed by some TM.

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

Decidable & Recognizable Venn diagram

Specification Example Formal Definition

Generalization: Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History

Church-Turing Thesis Algorithms

The Church-Turing Thesis

- It turns out that the "Turing Machine model" and *all* the other models of general purpose computation that have been proposed are equivalent!
- They all share one essential feature: Unrestricted access to unlimited memory.

As opposed to the DFA/NFA/PDA models for example.

- They all satisfy reasonable requirements such as the ability to perform only a finite amount of work in a single step.
- They all can **simulate** each other!

Philosophical Corollary: Church-Turing Thesis

Every effective computation can be carried out by a TM.

i.e. *algorithmically computable* \iff computable by a TM.

See http://plato.stanford.edu/entries/church-turing/ and http://en.wikipedia.org/wiki/Church-Turing_thesis for discussion.

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

> Decidable & Recognizable Venn diagram

Specification Example Formal Definition

Generalization Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis

Algorithms

In a sense, the Church-Turing thesis implies that the class of "algorithms" described by all these models of computation is the same, and corresponds to the natural *intuitive concept of algorithms*.

Using TMs to formallly define "algorithms"

Intuitive concept of algorithms = Turing machine algorithms

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

Decidable & Recognizable Venn diagram

Specification Example Formal Definition

Generalization: Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms

Next week...

Limits of computation...

Even TMs cannot solve all problems!

There are problems that are beyond the theoretical limits of computation!

Turing Machines (TMs)

Review

Turing Machines Example TM Computation

> Decidable & Recognizable Venn diagram

Specification Example Formal Definition

Generalization Nondeterminism Multi-tape TMs in real life

What is computation? Effective methods History Church-Turing Thesis Algorithms