Turing Machines (TMs)

Dr Kamal Bentahar

School of Computing, Electronics and Mathematics Coventry University

Lecture 6

Turing Machines (TMs)

Review
Turing
Machines
Example
TM
Computation

Decidable \&
Recognizable venn diagram

Specification Example

Formal Definition
Generalizations Nondeterminism
Multi-tape
TMs in real life
What is
computation? Effective methods History
Church-Turing
Thesis
Algorithms
$0 / 20$

Last week. . . Grammars/Chomsky Hierarchy

Turing Machines (TMs)

Grammar	Languages	Automaton	Production rules
Type-0	Recursively Enumerable	Turing Machine (TM)	$\alpha \rightarrow \beta$
Type-1	Context Sensitive	Linear-bounded TM	$\alpha A \beta \rightarrow \alpha \gamma \beta$
Type-2	Context Free	PDA	$A \rightarrow \gamma$
Type-3	Regular	NFA/DFA	$A \rightarrow a B \mid a$

a, b, \ldots Terminals - constitute the strings of the language
$A, B, \ldots \quad$ Non-terminals - should be replaced
$\alpha, \beta, \ldots \quad$ Combinations of the above

Example
TM
Computation
Decidable \&
Recognizable
Venn diagram
Specification

Example

Formal Definition
Generalizations
Nondeterminism
Multi-tape
TMs in real life
What is

Turing Machine (TM)

■ Similar to NFA/PDA, but has unrestricted access to unlimited memory.
■ No known model of computation is more powerful than the TM model.

The main differences are:
1 TMs may store the entire input string and refer to it as often as needed.
2 Dedicated states for accepting and rejecting which take immediate effect. (No need to reach the end of the input string.)
$3 \rightarrow$ TMs have the potential to go on for ever, without reaching either an accept or reject state. (\rightarrow "Halting Problem".)

Example (TM to recognize $\left\{w \# w \mid w=\{0,1\}^{*}\right\}$)

1 Scan the input to check it contains only a single \# symbol. If not then reject.
2 Zig-zag across the tape to corresponding symbols on either side of the \# symbol, crossing off each matching pair. If they do not match then reject.
3 When all symbols to the left of the \# are crossed off, check for any remaining symbols to the right. If there are then reject, otherwise accept.

Task: Trace the TM on the following inputs:
01\#01
011\#01
01\#011
01\#\#01

Review
Turing
Machines

Turing Machine (TM)

- TM has an infinite tape (memory), divided into cells.
- It has a tape head, which may read and write symbols and move around.

Review
Turing
Machines

Example

TM
Computation
Decidable \&
Recognizable

Turing Machine Computation

- Input is placed on tape; rest of the tape is blank.
- Head starts on the leftmost cell of the input.

Review

Turing

Machines
Example
TM
Computation
Decidable \&
Recognizable Venn diagram

Specification

Example

Formal Definition

Decidable and recognizable languages

Decidable languages

A language is decidable if some TM decides it. Namely, given a string w:

- if w is in the language then the TM will accept it.
\square it w is not in the language then the TM will reject it.

Review
Turing
Machines

The "computation universe" discovered so far. . .

Chomsky Hierarchy

The Extended Chomsky Hierarchy

Not Recognizable $2 \overrightarrow{0}$
Decidable
EXPSPACE

Chomsky Hierarchy

The Extended Chomsky Hierarchy

Turing

 Machines
Chomsky Hierarchy

The Extended Chomsky Hierarchy

Turing Machines

Chomsky Hierarchy

The Extended Chomsky Hierarchy

Description of algorithms and TMs

Three possible levels of detail:

1 Formal description.
Review

Transition diagrams, etc.
2 Implementation description.
Describe how TM manages tape and moves head.
3 High-level description.
Pseudocode or higher.

We also specify how to encode objects (if not obvious/standard), and the exact input and output.

```
Example (L ={0 2
```

Turing

This language consists of all strings of 0's whose length is a power of 2 .

$$
L=\left\{0,00,0000,00000000,0^{16}, 0^{32}, \ldots\right\}
$$

Input: String $s \in\{0\}^{+}$.
Output: true if $|s|$ is a power of 2 ; false otherwise.
1: while $|s|$ is even do
2: $\quad s \leftarrow$ half of s
3: end while
4: if $|S|=1$ then
5: return true
6: else
7: return false
8: end if

Review
Turing
Machines
Example
TM
Computation
Decidable \&
Recognizable
Venn diagram
Specification
Example
Formal Definition
Generalizations
Nondeterminism
Multi-tape
TMs in real life
What is
computation?
Effective methods History
Church-Turing Thesis Algorithms

Example ($L=\left\{0^{2^{n}} \mid n \geq 0\right\} \quad$ (2/3) Implementation level)

1 Scan left to right across the tape, crossing off every other 0 .
2 If only a single 0 remains then accept.
3 If an odd number of 0's remain then reject.
4 Return to the left hand end of the tape.
5 Go to step 1.
Task: Trace the following inputs:

$$
0,0^{2}, 0^{3}, 0^{4}, 0^{7}
$$

Review
Turing

Example ($L=\left\{0^{2^{n}} \mid n \geq 0\right\} \quad$ (3/3) Formal description)

Notation:

$\mathrm{a} \rightarrow \mathrm{b}, R$: read a on the tape: replace it with b, then move to the right. (L: left.)
a, R : shorthand for $\mathrm{a} \rightarrow \mathrm{a}, R$

Formal description:

- $Q=\{1,2,3,4,5, A, R\}$

■ $\Sigma=\{0\}$
■ 「 $=\{0, x, \square\}$

- The start, accept and reject states are 1, A and R, respectively.
- δ is given by the state diagram:

Review
Turing
Machines
Example
TM
Computation
Decidable \& Recognizable Venn diagram

Specification

Example

Formal Definition
Generalizations
Nondeterminism
Multi-tape
TMs in real life
What is
computation?
Effective methods
History
Church-Turing
Thesis
Algorithms
$12 / 20$

Formal Definition of a TM

A Turing Machine is a 7 -tuple $\left(Q, \Sigma, \Gamma, \delta, q_{\text {start }}, q_{\text {accept }}, q_{\text {reject }}\right)$ where
■ Q is the finite set of states
$\square \Sigma$ is the input alphabet, not containing the special blank symbol: \square
$\square \Gamma$ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subset \Gamma$
Review
Turfing Machines

Nondeterministic TMs (NTMs/NDTMs)

■ For an NTM, a given configuration can have zero or more subsequent configurations.
\rightarrow TM may be in many configurations at the same time.
Imagine the NTM self-replicating as it goes along.
■ If an NTM is a decider then:

Review
Turing
Machines

Example

TM
Computation
Decidable \&
Recognizable
Venn diagram
Specification

Example

Formal Definition
Generalizations Nondeterminism Mult-tape
TMs in real life

Multi-tape TMs

- A multi-tape TM is a TM with more than one tape.

■ More transitions need to be defined, but it simplifies computations.

Example ($\left\{w \# w \mid w=\{0,1\}^{*}\right\}$)

One-tape: Zig-zag around \# crossing off matching symbols. Requires nested loops.
Multi-tape: Write the second half in the second tape, then use a single loop to check it matches the first half.

Review

Turing
Machines
Example
TM
Computation
Decidable \&

Equivalence

Every multi-tape TM has an equivalent single-tape TM.

TMs in real life

■ The closest we have to an NTM is DNA computation:
The processed units are artificially manufactured chromosomes (capable of self-replication). This still is not really nondeterministic as there is a finite limit to the number of DNA strands which may exist during computation.

■ Quantum computers promise to be faster than the classical-physics machines that we currently have, but they are still equivalent to Turing Machines.

What is computation?

A computational procedure is called effective if:
■ it is set out in terms of a finite number of exact instructions,
■ it will produce the desired result in a finite number of steps,
■ in principle, it can be carried out by a human being, unaided by any machinery except paper and pencil,

- it demands no insight, intuition, or ingenuity, on the part of the human carrying out the procedure.

History - Nature of computing

Questions about this first arose in the context of pure Mathematics:

- Gottlob Frege (1848-1925)

■ David Hilbert (1862-1943)
■ George Cantor (1845-1918)
■ Kurt Gödel (1906-1978)

- 1936:

■ Gödel and Stephen Kleene (1909-1994): Partial Recursive Functions

- Gödel, Kleene and Jacques Herbrand (1908-1931)

■ Alonzo Church (1903-1995): Lambda Calculus
■ Alan Turing (1912-1954): Turing Machine
■ 1943: Emil Post (1897-1954): Post Systems

- 1954: A.A. Markov: Theory of Algorithms - Grammars
- 1963: Shepherdson and Sturgis: Universal Register Machines

Equivalence of all of these models \rightarrow "Church-Turing Thesis"

All these models define exactly the same class of computable functions!
\rightarrow Anything that is computable can be computed by some TM.

The Church-Turing Thesis

■ It turns out that the "Turing Machine model" and all the other models of general purpose computation that have been proposed are equivalent!
■ They all share one essential feature: Unrestricted access to unlimited memory.
As opposed to the DFA/NFA/PDA models for example.
■ They all satisfy reasonable requirements such as the ability to perform only a finite amount of work in a single step.
■ They all can simulate each other!

Philosophical Corollary: Church-Turing Thesis

Every effective computation can be carried out by a TM.
i.e. algorithmically computable \Longleftrightarrow computable by a TM.

Algorithms

Turing Machines (TMs)

Review

Next week. . .

Turing Machines (TMs)

Review
Turing
Machines
Example
TM
Computation

Decidable \&

Recognizable
Venn diagram
Specification
Example
Formal Definition
Generalizations
Nondeterminism
Multi-tape
TMs in real life
What is
computation?
Effective methods
History
Church-Turing
Thesis
Algorithms

