
CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Context-Free Languages (CFLs)
& Grammars

Dr Kamal Bentahar

School of Computing, Electronics and Mathematics
Coventry University

Lecture 5

0 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Theory
of CS

Models of
Computation

DFA/NFA

NFA
→DFA

RegEx
GNFA

PDA

CFG

TM
Decidability

“Halting
problem”

Turing
Unrecog-
nizable

Reduction

Complexity

P

NP

NP-
hard

NP-
complete

0 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Pumping
Lemma

Theory
of CS

Models of
Computation

DFA/NFA

NFA
→DFA

RegEx
GNFA

PDA

CFG

TM
Decidability

“Halting
problem”

Turing
Unrecog-
nizable

Reduction

Complexity

P

NP

NP-
hard

NP-
complete

0 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Theory
of CS

Models of
Computation

DFA/NFA

NFA
→DFA

RegEx
GNFA

PDA

CFG

TM
Decidability

“Halting
problem”

Turing
Unrecog-
nizable

Reduction

Complexity

P

NP

NP-
hard

NP-
complete

0 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Language classes

Regular Context-free

1 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Important concepts developed so far. . .

Languages
Alphabet, sets and subsets.

Finite State Machines (FSMs: DFA/NFA).
States, transitions, initial and accept states.

Nondeterminism.
Equivalence of models.
Accepters vs generators.
FSM vs RegEx/Grammar.

2 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Making NFAs more powerful. . .

We have seen that {anbn | n ≥ 0} is not regular. (Pumping Lemma)
What can we add to NFAs to enable them to recognize this language?

Idea!

Count how many symbols have been seen.
We can use a stack!
What is a “stack”?

LIFO memory (Last-In First Out).
Can push & pop.
Infinite (structured) memory!

3 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Counting using a stack

push push push push pop pop pop

4 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Remembering patterns using a stack

push push push push pop pop pop

5 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Push-Down Automata (PDAs)
Largely the same as NFAs but with the addition of stack memory
More powerful than NFAs: can recognize some non-regular languages.
On transition, the machine does not just change state: it also pushes
and/or pops an item on/off the stack.

Example ({anbn | n ≥ 1} = {ab,aabb,aaabbb, . . .})

Push all the a’s onto the stack, and then pop one off each time a b is read.
If the stack is empty at the end then the machine accepts.

an bn

a, push a

b, pop a

b, pop a

6 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Notation and technicalities. . .

We label transitions with: a,b→ c
a: input symbol read from the input string
b: symbol popped off the stack
c: symbol which replaces it
Either a, b or c may be ε

a must be read from the string and b must be present on the stack.

There is no special feature for checking if the stack is empty.
→ Push a delimiting character (e.g. � or $) onto the stack at the
beginning, then test for this character to see if it is empty.
There is no specific way to test for the end of the input.
→ Have no transitions out of the accept state (i.e. only the last character
can reach it).

7 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Example ({anbn | n ≥ 1} = {ab,aabb,aaabbb, . . .})

an bn

a, push a

b, pop a

b, pop a

an bn
ε, ε→ �

a, ε→ a

b,a→ ε

b,a→ ε

ε,�→ ε

8 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Example ({anban | n ≥ 0})

an an
push $

a, push 1

b

a, pop 1

pop $

an an
ε, ε→ $

a, ε→ 1

b, ε→ ε

a,1→ ε

ε, $→ ε

9 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Example ({w#wR | w ∈ {0,1}∗})

Recall: wR is “w in reverse” (backwards), e.g. if w = 1011 then wR = 1101.
Memorise the part before # then match in reverse order to the part after #.

w wR
ε, ε→ $

0, ε→ 0
1, ε→ 1

#, ε→ ε

0,0→ ε
1,1→ ε

ε, $→ ε

10 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Closures & Nondeterminism

Like NFAs:

Closed under union, concatenation, and star operations.
Non-determinism behaviour, and each branch of the computation gets its
own stack!

Different!
Unlike DFAs vs NFAs, deterministic PDAs are less powerful than
non-deterministic PDAs (i.e., they recognize less languages).

Some CFLs can only be recognized by non-deterministic PDAs.

11 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Example ({aibjck | i = j or i = k})

Rewrite as:
{aibjck | i = j} ∪ {aibjck | i = k}

ε, ε→ �

ε, ε→ �

a, ε→ 1

ε, ε→ ε

b,1→ ε

ε,�→ ε

c, ε→ ε

a, ε→ 1

ε, ε→ ε

b, ε→ ε

ε, ε→ ε

c,1→ ε

ε,�→ ε

12 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Formal definition of PDAs & CFLs

Push-Down Automata (PDAs)

A PDA is a 6-tuple {Q,Σ, Γ, δ,qstart,F} where
Q is the set of states
Σ is the input alphabet
Γ is the stack alphabet
δ : Q × Σε×Γε → 2Q×Γε is the transition function
qstart is the start state
F is the set of accept states

Context-Free Languages (CFLs)

A language is Context-Free iff it is recognized by a non-determinsitc PDA.

13 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Grammars
Grammars are defined by production rules such as

A → a A b
A → B
B → ε

The rules of the grammar represent possible replacements
e.g. A→ a A b means the variable A may be replaced with the string a A b.

Lower case symbols a and b are terminals (like symbols for NFAs).
They constitute the alphabet for the grammar.
Upper case symbols A and B are variables (or non-terminals).
They are to be replaced by terminals or strings.
A is the start variable.

14 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Derivation of strings – generation of a language
Let G be the grammar

A → a A b
A → B
B → ε

From the start variable A, we can iteratively replace variables until we get a
string, e.g.

A→ a A b→ aa A bb→ aa B bb→ aaεbb = aabb

This is called a derivation of the string aabb.
Each step α→ β is read: α yields β.
We say: A derives aabb, and write: A ∗−→ aabb.
(∗−→ means: in zero or more steps).
So, language of the grammar G is {w ∈ Σ∗ | A ∗−→ w}.

15 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Parse Trees
Diagrammatic way of representing the derivation process.

A→ aAb→ aaAbb→ aaBbb→ aaεbb = aabb

A

a A

a A

B

ε

b

b

or

A

a

A

a

A

B

ε b b

16 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

RL↔ DFA/NFA/RegEx↔ Regular Grammar
Make a variable Vi for each state qi

Add a rule Vi → aVj for each transition from qi to qj on symbol a.
Add a rule Vi → ε if qi is an accepting state

Example

Variables: A,B.

A → 0A

A → 1B

B → 1B

B → 0A

B → ε

A B

0

1

0

1

17 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Notation

To make writing grammars compact, we combine rules starting with the same
variable:

A → 0A
A → 1B

B → 1B
B → 0A
B → ε

become

{
A → 0A | 1B
B → 1B | 0A | ε

Here the | symbol means “or” or “union”.

18 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

“Language recognition” and “Language generation”

Regular Languages Context-Free Languages
Recognizer: NFA/DFA PDA

Generator: RegEx / Regular Grammar Context-Free Grammar

Context-Free Grammars (CFGs):
More powerful at describing languages than RegEx’s.
Can be used to describe all RLs, as well as some non regular ones

First used in the study of natural languages.

19 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

CFGs: Context-Free Grammars

Context-Free Grammars (CFGs) are defined by production rules such as

A → aAb
A → B
B → ε

Only one variable to the left of the arrow.
→ “context free.”

20 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Design of CFGs

Common rules:
S → aS generates {a,aa,aaa, . . .}
S → aSb generates {ab,aabb,aaabbb, . . .}
S → AB: concatenation.
S → A | B: union.
S → SS produces SS,SSS,SSSS,
S → SS | ε produces ε,SS,SSS,SSSS, . . .: star.

21 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Design of CFGs: look for recursive structures
Example

Design a CFG to represent the language L over Σ = {a,b}, given by

L = {w | w = anban, n ≥ 0}

We note that

anban =

{
a(an−1ban−1)a for n ≥ 1 (Recursive case)
b for n = 0 (Base case)

CFG:

A → aAa
A → b

22 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Grammars
Chomsky Hierarchy

Grammar Languages Automaton Production rules
Type-0 Recursively Enumerable Turing Machine (TM) α→ β (no restrictions)
Type-1 Context Sensitive Linear-bounded TM αAβ → αγβ
Type-2 Context Free PDA A → γ
Type-3 Regular NFA A → aB | a

Context-Free Grammars (CFGs)
A Context Free Grammar (CFG) is a 4-tuple {V ,Σ,R,S} where

V is the set of variables

Σ is the set of terminals

R is the set of production rules

S is the start variable

23 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Equivalence of PDAs and CFGs
→ Context-Free Languages (CFLs)

Context-Free Languages (CFLs)

The class of languages recognized by PDAs is the same as the one generated
by CFGs.

Can be shown by providing methods to convert one to the other – refer to
the textbook for a demonstration.
We call this class: Context-Free Languages (CFLs).

24 / 25

CFLs &
Grammars

Review

NFA & Stack
Counting

Memorising

PDAs
Notation

an bn

an ban

w#wR

Closures &
Nondeterminism

ai bj ck , i = j or k

Formal definition

Grammars
Derivation

Parse trees

Regular Grammars

Summary

CFGs
Design of CFGs

Formal definition

CFLs

Pumping Lemma for CFLs (Not examinable)

For the curious – not examinable!

Pumping Lemma for CFLs

If L is a CFL then there is a number p where: if w is any string in L of length at
least p then w may be divided into five pieces w = uxyzv satisfying the
conditions

1 for each k ≥ 0 : uxkyzkv ∈ L
2 |xz| > 0
3 |xyz| ≤ p

25 / 25

	Review
	NFA & Stack
	Counting
	Memorising

	PDAs
	Notation
	anbn
	anban
	w#wR
	Closures & Nondeterminism
	aibjck, i=j or k
	Formal definition

	Grammars
	Derivation
	Parse trees
	Regular Grammars
	Summary

	CFGs
	Design of CFGs
	Formal definition
	CFLs

