Limitations of the Regular Languages

The Pumping Lemma

Dr Kamal Bentahar

School of Computing, Electronics and Mathematics
Coventry University

Lecture 4

Mindmap

Proof by existence

Mindmap

Proofs
Proof by existence
Proof by contradiction

Observation

Unary alphabet Pigeon-hole principle Binary alphabet

Pumping
Lemma
PL Game!
Examples
$a^{n} b^{n}$
ww
Pumping down
Implications
Constant Space
$0 / 23$

Last week. . .

Regular Languages

The class of regular languages can be:
1 Recognized by NFAs. (equiv. GNFA or ε-NFA or NFA or DFA).
2 Described using Regular Expressions.

Today:
1 See the limit of regular languages.
2 How to show a language is not regular.

Types of proofs

We show a language is regular using "proof by existence":

- Construct an NFA recognizing it.

■ Write a Regular Expression for it. Using closure under the union, concatenation and star operations.

Types of proofs

We show a language is regular using "proof by existence":
■ Construct an NFA recognizing it.

- Write a Regular Expression for it. Using closure under the union, concatenation and star operations.

Is it raining now? - example of proof by contradiction

■ Is it raining now?

Is it raining now? - example of proof by contradiction

■ Is it raining now?
■ Suppose it is.
Mindmap
Proofs
Proof by existence
Proof by contradiction

Is it raining now? - example of proof by contradiction

■ Is it raining now?

- Suppose it is.

■ Let us go outside where it is supposed to be raining.
Mindmap

Proof by existence
Proof by contradiction

Is it raining now? - example of proof by contradiction

■ Is it raining now?

- Suppose it is.

■ Let us go outside where it is supposed to be raining.
\square If it is raining then we should get wet. (No umberlla, etc.)

Is it raining now? - example of proof by contradiction

■ Is it raining now?

- Suppose it is.

■ Let us go outside where it is supposed to be raining.

- If it is raining then we should get wet.
(No umberlla, etc.)
■ However, we did not get wet!
Mindmap

Proof by existence
Proof by contradiction

Is it raining now? - example of proof by contradiction

■ Is it raining now?

- Suppose it is.

■ Let us go outside where it is supposed to be raining.

- If it is raining then we should get wet.
(No umberlla, etc.)
■ However, we did not get wet!
■ Thus, it is not raining!
Proof by contradiction

Eulerian paths - example of proof by contradiction

Is it possible to traverse
this graph by travelling along each edge

Pigeon-hole princip Binary alphabet

Pumping Lemma
PL Game! Examples $a^{n} b^{n}$ ww
Pumping down
Implications Constant Space

Eulerian paths - example of proof by contradiction

Is it possible to traverse this graph by travelling along each edge

■ Suppose it is possible.
Proof by existence Proof by contradiction

Eulerian paths - example of proof by contradiction

Is it possible to traverse this graph by travelling along each edge exactly once?

■ Suppose it is possible.
■ How many times would each vertex be visited?

Proof by existence Proof by contradiction

Observation
Unary alphabet
Pigeon-hole principle Binary alphabet

Pumping Lemma

PL Game! Examples $a^{n} b^{n}$ ww

Pumping down

Eulerian paths - example of proof by contradiction

Is it possible to traverse this graph by travelling along each edge exactly once?

■ Suppose it is possible.
■ How many times would each vertex be visited?
■ Every time a vertex is entered, it is also exited.

Mindmap

Proofs

Proof by existence
Proof by contradiction

Observation
Unary alphabet
Pigeon-hole principle Binary alphabet

Pumping Lemma

PL Game! Examples $a^{n} b^{n}$ ww

Pumping down

Eulerian paths - example of proof by contradiction

Is it possible to traverse this graph by travelling along each edge exactly once?

■ Suppose it is possible.
■ How many times would each vertex be visited?
■ Every time a vertex is entered, it is also exited.

- So, each vertex must have an even number of neighbours.

Proof by existence
Proof by contradiction

Eulerian paths - example of proof by contradiction

Is it possible to traverse
this graph by travelling along each edge exactly once?

- Suppose it is possible.

■ How many times would each vertex be visited?
\square Every time a vertex is entered, it is also exited.

- So, each vertex must have an even number of neighbours.
- The starting and ending vertices are exceptions: odd number of neighbours.

Eulerian paths - example of proof by contradiction

Is it possible to traverse this graph by travelling along each edge exactly once?

■ Suppose it is possible.

- How many times would each vertex be visited?
\square Every time a vertex is entered, it is also exited.
- So, each vertex must have an even number of neighbours.
- The starting and ending vertices are exceptions: odd number of neighbours.
■ There can only be 0 or 2 such exceptions.
Proof by existence
Proof by contradiction

Observation
Unary alphabet
Pigeon-hole principle Binary alphabet

Pumping
Lemma
PL Game! Examples
$a^{n} b^{n}$
ww
Pumping down
Implications Constant Space

Eulerian paths - example of proof by contradiction

Is it possible to traverse this graph by travelling along each edge exactly once?

■ Suppose it is possible.
■ How many times would each vertex be visited?
\square Every time a vertex is entered, it is also exited.
■ So, each vertex must have an even number of neighbours.

- The starting and ending vertices are exceptions: odd number of neighbours.
- There can only be 0 or 2 such exceptions.

■ However, this graph has 4 exceptions!
Proof by existence
Proof by contradiction

Observation
Unary alphabet
Pigeon-hole principle Binary alphabet

Pumping
Lemma
PL Game! Examples
$a^{n} b^{n}$
ww
Pumping down
Implications Constant Space

Eulerian paths - example of proof by contradiction

this graph by travelling along each edge exactly once?

■ Suppose it is possible.
■ How many times would each vertex be visited?
■ Every time a vertex is entered, it is also exited.

- So, each vertex must have an even number of neighbours.
- The starting and ending vertices are exceptions: odd number of neighbours.
- There can only be 0 or 2 such exceptions.

■ However, this graph has 4 exceptions!

- Thus, it is impossible to traverse this graph by travelling along each path exactly once.

Types of proofs - Proof by contradiction

To prove a language is not regular, we can use proof by contradiction.

- We need a property that all regular languages must satisfy.

■ Then, if a given language does not satisfy it then it cannot be regular.

Types of proofs - Proof by contradiction

To prove a language is not regular, we can use proof by contradiction.
\square We need a property that all regular languages must satisfy.

- Then, if a given language does not satisfy it then it cannot be regular.

Let us try to understand the regular languages (RLs) a bit more...
■ Let us examine some examples in the next few slides...
■ For each automaton, let us think about the path taken by an accepted string - is it "straight" or does it loop?

Unary alphabet $\{1\}$ - Strings of length $3,5,7,9, \ldots$

Pumping
Lemma
PL Game! Examples $a^{n} b^{n}$ ww
Pumping down
Implications

Unary alphabet $\{1\}$ - Strings of length $3,5,7,9, \ldots$

- 111 takes a "straight path" to the accept state

Unary alphabet $\{1\}$ - Strings of length $3,5,7,9, \ldots$

- 111 takes a "straight path" to the accept state

Pumping
Lemma
PL Game! Examples

■ 11111 goes through a loop.
Pumping down

Unary alphabet $\{1\}$ - Strings of length $3,5,7,9, \ldots$

- 111 takes a "straight path" to the accept state

■ 11111 goes through a loop.
■ Repeating the looped part produces longer strings:

$$
\begin{aligned}
& 1111111 \text {, } \\
& \begin{array}{l|l|l|}
\hline 11 & 11 & 11 \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|}
\hline 11 & 11 & 11 & 11 \\
1
\end{array}, \ldots
\end{aligned}
$$

Unary alphabet $\{1\}$ - Strings of length $3,5,7,9, \ldots$

- 111 takes a "straight path" to the accept state
- 11111 goes through a loop.
- Repeating the looped part produces longer strings:

11		

■ In fact, we can also omit the 11 loop to get: 111 .

Unary alphabet $\{1\}$ - Strings of length $3,5,7,9, \ldots$

- 111 takes a "straight path" to the accept state

■ 11111 goes through a loop.

- Repeating the looped part produces longer strings:

■ In fact, we can also omit the 11 loop to get: 111.
We say: we pump the substring 11.

$(111)^{*}+(11111)^{*}$

Set of accepted strings is: $\left\{\varepsilon, 1^{3}, 1^{6}, 1^{9}, \ldots\right\} \cup\left\{\varepsilon, 1^{5}, 1^{10}, 1^{15}, \ldots\right\}$

Mindmap
Proofs
Proof by existence
Proof by contradiction

Observation

Unary alphabet Pigeon-hole principle Binary alphabet

Pumping
Lemma
PL Game!
Examples
$a^{n} b^{n}$
ww
Pumping down
Implications
Constant Space
$6 / 23$
$(111)^{*}+(11111)^{*}$

Set of accepted strings is:

$$
\begin{gathered}
\left\{\varepsilon, 1^{3}, 1^{6}, 1^{9}, \ldots\right\} \cup\left\{\varepsilon, 1^{5}, 1^{10}, 1^{15}, \ldots\right\} \\
\square \\
111 \text { can be pumped to give: } \\
(111)^{0}=\varepsilon,(111)^{1}=1^{3}, \\
(111)^{2}=1^{6},(111)^{3}=1^{9}, \ldots
\end{gathered}
$$

Mindmap

Proofs
Proof by existence Proof by contradiction

Observation Unary alphabet Pigeon-hole principle Binary alphabet

Pumping
Lemma
PL Game! Examples $a^{n} b^{n}$ ww
Pumping down
Implications Constant Space
$(111)^{*}+(11111)^{*}$

Set of accepted strings is:

$$
\begin{gathered}
\left\{\varepsilon, 1^{3}, 1^{6}, 1^{9}, \ldots\right\} \cup\left\{\varepsilon, 1^{5}, 1^{10}, 1^{15}, \ldots\right\} \\
\square \\
111 \text { can be pumped to give: } \\
(111)^{0}=\varepsilon,(111)^{1}=1^{3}, \\
(111)^{2}=1^{6},(111)^{3}=1^{9}, \ldots
\end{gathered}
$$

- 11111 can be pumped to give:
$(11111)^{0}=\varepsilon,(11111)^{1}=1^{5}$, $(11111)^{2}=1^{10},(11111)^{3}=1^{15}, \ldots$
$(111)^{*}+(11111)^{*}$

Set of accepted strings is:

$$
\begin{gathered}
\left\{\varepsilon, 1^{3}, 1^{6}, 1^{9}, \ldots\right\} \cup\left\{\varepsilon, 1^{5}, 1^{10}, 1^{15}, \ldots\right\} \\
\square \\
\text { 111 can be pumped to give: } \\
(111)^{0}=\varepsilon,(111)^{1}=1^{3}, \\
(111)^{2}=1^{6},(111)^{3}=1^{9}, \ldots
\end{gathered}
$$

- 11111 can be pumped to give: $(11111)^{0}=\varepsilon,(11111)^{1}=1^{5}$, $(11111)^{2}=1^{10},(11111)^{3}=1^{15}, \ldots$
- The shortest string that can be pumped is: 111.

Mindmap

Proofs

Proof by existence

Proof by contradiction

Observation
Unary alphabet
$(111)^{*}+(11111)^{*}$

Set of accepted strings is:

$$
\left\{\varepsilon, 1^{3}, 1^{6}, 1^{9}, \ldots\right\} \cup\left\{\varepsilon, 1^{5}, 1^{10}, 1^{15}, \ldots\right\}
$$

- 111 can be pumped to give:

Mindmap

Proofs

Proof by existence

$(111)^{0}=\varepsilon,(111)^{1}=1^{3}$, $(111)^{2}=1^{6},(111)^{3}=1^{9}, \ldots$
■ 11111 can be pumped to give: $(11111)^{0}=\varepsilon,(11111)^{1}=1^{5}$, $(11111)^{2}=1^{10},(11111)^{3}=1^{15}, \ldots$

Observation
Unary alphabet

- The shortest string that can be pumped is: 111.
$■ 3$, the length of 111 , is called: pumping length.

Unary alphabet

Let L be a regular language over a unary alphabet $\Sigma=\{1\}$.
The language L is:

Unary alphabet

Let L be a regular language over a unary alphabet $\Sigma=\{1\}$.
The language L is:
■ either finite, in which case it is regular trivially,
■ or infinite, in which case its DFA will have to loop:
\square The DFA that recgnizes L has a finite number of states.

- Any string in L determines a path through the DFA.

■ So any sufficiently long string must visit a state twice.

- This forms a loop.

This looped part can be repeated any arbitrary number of times to produce other strings in L.

Pigeon-hole principle

If we put more than n pigeons into n holes then there must be a hole with more than one pigeon in.

$a \sum^{*} b$

Mindmap
Proofs
Proof by existence
Proof by contradiction

Observation
Unary alphabet Pigeon-hole principle Binary alphabet

Pumping Lemma
PL Game!
Examples
$a^{n} b^{n}$
ww
Pumping down
Implications
Constant Space

Mindmap

Proof́s
Proof by existence
Proof by contradiction

Observation
Unary alphabet Pigeon-hole principle Binary alphabet

Pumping
Lemma
PL Game!
Examples
$a^{n} b^{n}$
ww
Pumping down
Implications
Constant Space

9/23

$\Sigma^{*} \mathrm{~b}$

Mindmap
Proofs
Proof by existence
Proof by contradiction

Observation
Unary alphabet Pigeon-hole princip Binary alphabet

Pumping
Lemma
PL Game!
Examples
$a^{n} b^{n}$
ww
Pumping down
Implications
Constant Space

$\Sigma^{*} 1 \Sigma$

Mindmap
Proofs
Proof by existence
Proof by contradiction

Observation
Unary alphabet Pigeon-hole princi Binary alphabet

Pumping Lemma

PL Game!
Examples
$a^{n} b^{n}$
ww
Pumping down
Implications
Constant Space

$\Sigma^{*} \mathrm{aaa}$

Mindmap
Proofs
Proof by existence
Proof by contradiction

Observation
Unary alphabet Pigeon-hole princi Binary alphabet

Pumping Lemma

PL Gamel
Examples
$a^{n} b^{n}$
ww
Pumping down
Implications
Constant Space
$\operatorname{aab} \Sigma^{*}+\operatorname{aba} \Sigma^{*}$

Mindmap

Proofs
Proof by existence Proof by contradiction

Observation
Unary alphabet Pigeon-hole principle Binary alphabet

Pumping Lemma PL Game! Examples $a^{n} b^{n}$ $w w$ Pumping down Implications Constant Space

$(\Sigma 11)^{*} \Sigma$

Mindmap

Proofs
Proof by existence Proof by contradiction

Observation
Unary alphabet Pigeon-hole princip Binary alphabet

Pumping
Lemma
PL Game!
Examples
$a^{n} b^{n}$
ww
Pumping down
Implications
Constant Space

$\left(0 \Sigma^{*}(01+10)\right)^{*}$

Mindmap
Proofs
Proof by existence Proof by contradiction

Observation Unary alphabet Pigeon-hole princ
Binary alphabet

Pumping
Lemma
PL Game!
Examples
$a^{n} b^{n}$
ww
Pumping down
Implications Constant Space
$15 / 23$

A property satisfied by all RLs

Finite number of states \rightarrow DFA repeats one or more states if the string is long.

A property satisfied by all RLs

Finite number of states \rightarrow DFA repeats one or more states if the string is long.

Mindmap
Proofs
Proof by existence
Proof by contradiction

Observation
Unary alphabet
Pigeon-hole principle Binary alphabet

Pumping
Lemma
PL Game!
Examples
$a^{n} b^{n}$
ww
Pumping down
Implications

A property satisfied by all RLs

Finite number of states \rightarrow DFA repeats one or more states if the string is long.

■ When a DFA repeats a state R, divide the string into 3 parts:
1 The substring x before the first occurrence of R
2 The substring y between the first and last occurrence of R

A property satisfied by all RLs

Finite number of states \rightarrow DFA repeats one or more states if the string is long.

■ When a DFA repeats a state R, divide the string into 3 parts:
1 The substring x before the first occurrence of R
2 The substring y between the first and last occurrence of R
3 The substring z after the last occurrence of R
$\square x, z$ can be ε but y cannot be ε. (y forms a genuine loop.)

A property satisfied by all RLs

Finite number of states \rightarrow DFA repeats one or more states if the string is long.

■ When a DFA repeats a state R, divide the string into 3 parts:
1 The substring x before the first occurrence of R
2 The substring y between the first and last occurrence of R
3 The substring z after the last occurrence of R
$\square x, z$ can be ε but y cannot be ε. (y forms a genuine loop.)
\square Then, if the DFA accepts $x y z$ then it accepts all of:
$x z, x y z, x y y z, x y y y z, \ldots$

A property satisfied by all RLs

Finite number of states \rightarrow DFA repeats one or more states if the string is long.

■ When a DFA repeats a state R, divide the string into 3 parts:
1 The substring x before the first occurrence of R
Mindmap
Proofs
Proof by existence
Proof by contradiction

2 The substring y between the first and last occurrence of R
Pumping
Lemma

■ x, z can be ε but y cannot be ε. (y forms a genuine loop.)
■ Then, if the DFA accepts $x y z$ then it accepts all of:
$x z, x y z, x y y z, x y y y z, \ldots$

For any RL L, it is possible to divide an accepted string, that is "long enough", into 3 substrings $x y z$, in such a way that $x y^{*} z$ is a subset of L.

The Pumping Lemma (PL)

- We will denote a pumping length by p.

■ The precise meaning of "long enough" will be: $|w| \geq p$.
$\square y$ has to be in the first p symbols of w.

Mindmap
Proofs
Proof by existence
Proof by contradiction

Observation
Unary alphabet
Pigeon-hole principle Binary alphabet

Pumping
Lemma
PL Game!
Examples
$a^{n} b^{n}$
ww
Pumping down
Implications

The Pumping Lemma (PL)

\square We will denote a pumping length by p.
■ The precise meaning of "long enough" will be: $|w| \geq p$.

- y has to be in the first p symbols of w.

Pumping Lemma (PL)

Let L be a regular language. Then, there exists a constant p such that every string w from L, with $|w| \geq p$, can be broken into three substrings $x y z$ such that
$1 y \neq \varepsilon$ (or equivalently: $|y| \neq 0$ or $|y|>0$)
(y is in the first p symbols of w) $\left(x y^{*} z \subset L\right)$

Mindmap
Proofs
Proof by existence

The Pumping Lemma (PL)

\square We will denote a pumping length by p.
■ The precise meaning of "long enough" will be: $|w| \geq p$.

- y has to be in the first p symbols of w.

Pumping Lemma (PL)

Let L be a regular language. Then, there exists a constant p such that every string w from L, with $|w| \geq p$, can be broken into three substrings $x y z$ such that

Its main purpose in practice is to prove that a language is not regular. That is, if we can show that a language L does not have this property, then we conclude that L cannot be recognized by a DFA/NFA or expressed as a regular expression.

The PL Game!

When the $P L$ is used to prove that a language L is not regular, the proof can be viewed as a "game" between a Prover and a Falsifier as follows:

The PL Game!

When the PL is used to prove that a language L is not regular, the proof can be viewed as a "game" between a Prover and a Falsifier as follows:
(1) Prover claims L is regular and fixes a pumping length p.

The PL Game!

When the PL is used to prove that a language L is not regular, the proof can be viewed as a "game" between a Prover and a Falsifier as follows:
(1) Prover claims L is regular and fixes a pumping length p.
(2) Falsifier challenges Prover and picks a string $w \in L$ of length at least p symbols.

The PL Game!

When the $P L$ is used to prove that a language L is not regular, the proof can be viewed as a "game" between a Prover and a Falsifier as follows:
(1) Prover claims L is regular and fixes a pumping length p.
(3) Prover writes $w=x y z$ where $|x y| \leq p$ and $y \neq \varepsilon$.
(2) Falsifier challenges Prover and picks a string $w \in L$ of length at least p symbols.

The PL Game!

When the $P L$ is used to prove that a language L is not regular, the proof can be viewed as a "game" between a Prover and a Falsifier as follows:
(1) Prover claims L is regular and fixes a pumping length p.
(3) Prover writes $w=x y z$ where $|x y| \leq p$ and $y \neq \varepsilon$.
(2) Falsifier challenges Prover and picks a string $w \in L$ of length at least p symbols.

4 Falsifier wins by finding a value for k such that $x y^{k} z$ is not in L.

The PL Game!

When the $P L$ is used to prove that a language L is not regular, the proof can be viewed as a "game" between a Prover and a Falsifier as follows:
(1) Prover claims L is regular and fixes a pumping length p.
(3) Prover writes $w=x y z$ where $|x y| \leq p$ and $y \neq \varepsilon$.
(2) Falsifier challenges Prover and picks a string $w \in L$ of length at least p symbols.
(4) Falsifier wins by finding a value for k such that $x y^{k} z$ is not in L.

If Falsifier always wins then L is not regular.
If Prover always wins then L may be regular.

Example $\left(L=\left\{a^{n} b^{n} \mid n \geq 0\right\}\right)$

(1) Prover claims L is regular and fixes
a pumping length p.

Example $\left(L=\left\{a^{n} b^{n} \mid n \geq 0\right\}\right)$

(1) Prover claims L is regular and fixes a pumping length p.
(2) Falsifier challenges Prover and picks $w=\mathrm{a}^{p} \mathrm{~b}^{p} \in L . \quad(|w|=2 p \geq p)$

Example $\left(L=\left\{a^{n} b^{n} \mid n \geq 0\right\}\right)$

(1) Prover claims L is regular and fixes a pumping length p.
(3) Prover tries to split $w=$ a ... ab ... b into $x y z$ such that $|x y| \leq p$ $\underbrace{a \ldots \ldots \ldots}_{x} \underbrace{z a b \ldots b}_{y}$

Since y must be within the first p symbols then y is made of a's only.

Mindmap

Proofs
Proof by existence Proof by contradiction

Observation

Example $\left(L=\left\{a^{n} \mathrm{~b}^{n} \mid n \geq 0\right\}\right)$

(1) Prover claims L is regular and fixes a pumping length p.
(3) Prover tries to split $w=$ a ... ab ... b into $x y z$ such that $|x y| \leq p$ $\underbrace{a \ldots}_{x} \iota_{y} \underbrace{\ldots a b \ldots b}_{z}$

Since y must be within the first p symbols then y is made of a's only.
(2) Falsifier challenges Prover and picks $w=\mathrm{a}^{p} \mathrm{~b}^{p} \in L . \quad(|w|=2 p \geq p)$

$$
w=\underbrace{\mathrm{a} \ldots \ldots \ldots \ldots}_{p \text { symbols }} \underbrace{\mathrm{b} \ldots \ldots \ldots \mathrm{~b}}_{p \text { symbols }}
$$

(4) Falsifier now can for example build

$$
x y^{2} z=x y y z=\frac{a_{\text {more than } p \text { symbols }}^{\mathrm{a} \ldots \ldots \ldots \mathrm{a}} \underbrace{\mathrm{~b}}_{\text {antill } p \text { symbols }}}{\text { b. }}
$$

Hence $x y^{2} z \notin L$, and L is not regular.

Mindmap

Proofs
Proof by existence

Example $\left(L=\left\{w w \mid w \in\{0,1\}^{*}\right\}\right)$

(1) Prover claims L is regular and fixes a pumping length p.

Example ($\left.L=\left\{w w \mid w \in\{0,1\}^{*}\right\}\right)$

(1) Prover claims L is regular and fixes a pumping length p.
(2) Falsifier challenges Prover and Choose $w=0^{p} 10^{p} 1 \in L$. This has length $|w|=(p+1)+(p+1) \geq p$.

Mindmap

Proofs
Proof by existence
Proof by contradiction

Observation
Unary alphabet
Pigeon-hole principle Binary alphabet

Pumping
Lemma
PL Game!
Examples
$a^{n} b^{n}$
$w w$
Pumping down
Implications
Constant Space

Example ($L=\left\{w w \mid w \in\{0,1\}^{*}\right\}$)

(1) Prover claims L is regular and fixes a pumping length p.
(3) Prover tries to split $w=$ $\frac{0 \ldots 010 \ldots 01}{|x y| \leq p}$ into $x y z$ such that $\underbrace{0 \ldots \ldots \ldots \ldots \underbrace{}_{y} \underbrace{010 \ldots .01}_{z}}_{x}$

Since y must be within the first p symbols then y is made of 0's only.
(2) Falsifier challenges Prover and Choose $w=0^{p} 10^{p} 1 \in L$. This has length $|w|=(p+1)+(p+1) \geq p$.

$$
w=\underbrace{0 \ldots 0}_{p \text { symbols }} 1 \underbrace{0 \ldots 0}_{p \text { symbols }} 1
$$

Mindmap

Proofs
Proof by existence
Proof by
contradiction
Observation
Unary alphabet
Pigeon-hole principle Binary alphabet

Pumping
Lemma
PL Game!
Examples
$a^{n} b^{n}$
ww
Pumping down
Implications

Example ($\left.L=\left\{w w \mid w \in\{0,1\}^{*}\right\}\right)$

(1) Prover claims L is regular and fixes a pumping length p.
(3) Prover tries to split $w=$ $0 \ldots 010 \ldots 01$ into $x y z$ such that $\underbrace{0 \ldots \ldots \ldots \ldots \underbrace{}_{y} \underbrace{010 \ldots .01}_{z}}_{x}$

Since y must be within the first p symbols then y is made of 0's only.

(2) Falsifier challenges Prover and

 Choose $w=0^{p} 10^{p} 1 \in L$. This has length $|w|=(p+1)+(p+1) \geq p$.$$
w=\underbrace{0 \ldots \omega_{p \text { symbols }}^{0 \ldots} 1}_{p \text { symbols }} \underbrace{0 \ldots \ldots \ldots}_{p}
$$

Mindmap

Proofs
Proof by existence
Proof by
contradiction
Observation
Unary alphabet
Pigeon-hole principle Binary alphabet

Pumping
Lemma
PL Game!
Examples
$a^{n} b^{n}$
ww
Pumping down
Implications
(4) Falsifier pumps y to produce

$$
x y^{2} z=\underbrace{0 \ldots \ldots \ldots \ldots .0}_{\text {more than } p \text { symbols }} 1 \underbrace{0 \ldots \ldots}_{\text {still } p \text { symbols }}
$$

Hence $x y^{2} z \notin L$, and L is not regular.

Example ($\left.L=\left\{a^{i} b^{j} \mid i>j\right\}\right)$

(1) Prover claims L is regular and fixes
a pumping length p.

Example ($L=\left\{a^{i} b^{j} \mid i>j\right\}$)

(1) Prover claims L is regular and fixes a pumping length p.
(2) Falsifier challenges Prover and chooses $w=\mathrm{a}^{p+1} \mathrm{~b}^{p}$.
Here $|w|=(p+1)+p \geq p$.

Mindmap

Proofs
Proof by existence
Proof by
contradiction
Observation
Unary alphabet
Pigeon-hole principle Binary alphabet

Pumping Lemma PL Game! Examples $a^{n} b^{n}$
ww
Pumping down
Implications

Example ($L=\left\{a^{i} b^{j} \mid i>j\right\}$)

(1) Prover claims L is regular and fixes a pumping length p.
(2) Falsifier challenges Prover and chooses $w=\mathrm{a}^{p+1} \mathrm{~b}^{p}$. Here $|w|=(p+1)+p \geq p$.

$$
w=\underbrace{a \ldots a}_{p+1 \text { symbols }} \underbrace{b \ldots \ldots}_{p \text { symbols }}
$$

Mindmap

Proofs
Proof by existence Proof by contradiction

Observation
Unary alphabet
Pigeon-hole principle Binary alphabet

Pumping
Lemma
PL Game!
Examples
$a^{n} b^{n}$
$w w$
Pumping down
Implications Constant Space

Example ($L=\left\{a^{i} b^{j} \mid i>j\right\}$)

(1) Prover claims L is regular and fixes a pumping length p.
(2) Falsifier challenges Prover and chooses $w=\mathrm{a}^{p+1} \mathrm{~b}^{p}$.
Here $|w|=(p+1)+p \geq p$.

$$
w=\underbrace{a \ldots a}_{p+1 \text { symbols }} \underbrace{b \ldots \ldots}_{p \text { symbols }}
$$

Mindmap

Proofs
Proof by existence
Proof by
contradiction
Observation
Unary alphabet
Pigeon-hole principle Binary alphabet

Pumping
Lemma
PL Game!
Examples
$a^{n} b^{n}$
ww
Pumping down
(4) Falsifier pumps y down and forms

$$
x y^{0} z=\underbrace{\mathrm{a} \ldots \ldots \ldots \ldots \mathrm{a}}_{\text {at most } p \text { symbols }} \underbrace{\mathrm{b}}_{\text {still } p \text { symbols }}
$$

Hence $x y^{0} z \notin L$, and L is not regular.

Food for thought

If "modern computer" = Finite Automaton then:
■ We can only store a fixed finite amount of data, say
$1 \mathrm{~TB}=1024^{4} \times 8=2^{43}$ bits of information, i.e. a maximum of
$2^{2^{43}} \approx 10^{2,647,887,844,335}$ states - a finite number still!

Food for thought

If "modern computer" = Finite Automaton then:
■ We can only store a fixed finite amount of data, say
1 TB $=1024^{4} \times 8=2^{43}$ bits of information, i.e. a maximum of
$2^{2^{43}} \approx 10^{2,647,887,844,335}$ states - a finite number still!
■ So, our "modern computer" is not even able to recognize the (entire) language $a^{n} b^{n}$!

Food for thought

If "modern computer" = Finite Automaton then:

- We can only store a fixed finite amount of data, say
$1 \mathrm{~TB}=1024^{4} \times 8=2^{43}$ bits of information, i.e. a maximum of
Mindmap
Proofs
Proof by existence $2^{2^{43}} \approx 10^{2,647,887,844,335}$ states - a finite number still!
- So, our "modern computer" is not even able to recognize the (entire) language $a^{n} b^{n}$!

■ At some point, our "modern computer" can no longer keep track of how many a's there are in the input.
This occurs when the number of a's becomes greater than $2^{2^{43}}$.

Food for thought

If "modern computer" = Finite Automaton then:

Mindmap
Proofs
Proof by existence Proof by contradiction

Observation

Unary alphabet

■ We have assumed that the input string is not stored in the computer. . . (otherwise, it would just run out of memory anyway).

Food for thought

If "modern computer" = Finite Automaton then:
Mindmap

- We can only store a fixed finite amount of data, say $1 \mathrm{~TB}=1024^{4} \times 8=2^{43}$ bits of information, i.e. a maximum of $2^{243} \approx 10^{2,647,887,844,335}$ states - a finite number still!
- So, our "modern computer" is not even able to recognize the (entire) language $a^{n} b^{n}$!
- At some point, our "modern computer" can no longer keep track of how many a's there are in the input.
This occurs when the number of a's becomes greater than $2^{2^{43}}$.
- We have assumed that the input string is not stored in the computer. . . (otherwise, it would just run out of memory anyway).
■ However, at 3 GHz for example, this would take... a length of time so inconceivably huge that the age of the universe would be negligible by comparison. (So, do we care?)

Space Complexity: Constant Space \longleftrightarrow NFAs

- Finite Automaton: good model for algorithms which require constant space (i.e. space used does not grow with respect to the input size).
- Some languages cannot be recognized by NFAs.

Space used in computation must grow with respect to the input size.

- We will see a more powerful model of computation next week!

