Models of Computation: DFA \leftrightarrow NFA \leftrightarrow Regular Expressions

Review

Image of a function
DFA $\leftrightarrow N F A$ 1/2) DFA \rightarrow NFA 2/2) DFA $\leftarrow N F A$

Regular

School of Computing, Electronics and Mathematics
Coventry University
Lecture 3

DFA \leftrightarrow NFA
\leftrightarrow RegEx

Review
Image of a function
DFA $\leftrightarrow N F A$
1/2) DFA \rightarrow NFA 2(2) DFA \leftarrow NFA

Regular
Languages
ε-NFAs
The Regular Operations

Regular
Expressions
RegEx \rightarrow NFA NFA \rightarrow RegEx
GNFA
NFA \rightarrow GNFA
GNFA \rightarrow RegEX
Summary
$0 / 26$

Last time: DFAs \& NFAs
DFA \leftrightarrow NFA
\leftrightarrow RegEx
■ DFA: $\delta: Q \times \Sigma \rightarrow Q$

- NFA: $\quad \delta: Q \times \Sigma \rightarrow 2^{Q}$

Computation schematic:

Deterministic
computation

* start
\vdots
+ accept or reject

Nondeterministic computation

Review
Image of a function
DFA $\leftrightarrow N F A$
1/2) DFA \rightarrow NFA
2/2) DFA \leftarrow NFA

Regular

Languages
ε-NFAs
The Regular
Operations
Regular
Expressions
RegEx \rightarrow NFA
NFA \rightarrow RegEX
GNFA
NFA \rightarrow GNFA
GNFA \rightarrow RegE
Summary

Image of a function

The set of "all the values taken by δ " is called the image of δ.

Example

If $Q=\{A, B, C\}$ and δ is given by

	0	1
$\rightarrow A$	B	B
$* B$	B	C
C	C	C

1/2) DFA \rightarrow NFA

- Given a DFA, how do we construct an equivalent NFA to it?

Observation: DFAs are a special case of NFAs!
Technically, we interpret each state q from the image of δ as a set $\{q\}$.

Example

Review

Image of a function
DFA $\leftrightarrow N F A$
1/2) DFA \rightarrow NFA
2/2) DFA \leftarrow NFA

Regular

Languages

ε-NFAs
The Regular
Operations

- How about the reverse? Can we convert any NFA to an equivalent DFA that recognizes the same language?

Idea: Build a DFA that simulates how the NFA works.

- All we need to keep track of is the current set of states used by the NFA.
- If n is the number of states of the NFA then there are 2^{n} subsets of states.
- Each subset corresponds to a possibility that the DFA must remember.

Let us see some examples...

2/2) DFA \leftarrow NFA

Example (The Subset construction method)

Review

Image of a function
DFA $\leftrightarrow N F A$ 1/2) DFA \rightarrow NFA 2/2) DFA \leftarrow NFA

Regular
Languages
ε-NFAs
The Regular
Operations
Regular
Expressions
RegEx \rightarrow NFA
NFA \rightarrow RegEx
GNFA
NFA \rightarrow GNFA
GNFA \rightarrow RegEX
Summary

2/2) DFA \leftarrow NFA

Example (The subset construction method directly applied to a table)

Review

Image of a function
DFA $\leftrightarrow N F A$

1/2) DFA \rightarrow NFA

2/2) DFA \leftarrow NFA
Regular
Languages
ε-NFAs
The Regular
Operations
Regular
Expressions
RegEx \rightarrow NFA
NFA \rightarrow RegEx
GNFA
NFA \rightarrow GNFA
GNFA \rightarrow RegEx
Summary

Example (A longer example)

Review
Image of a function
DFA $\leftrightarrow N F A$
1/2) DFA \rightarrow NFA
2/2) DFA \leftarrow NFA
Regular
Languages
ε-NFAs
The Regular
Operations
Regular
Expressions
RegEx \rightarrow NFA
NFA \rightarrow RegEx
GNFA
NFA \rightarrow GNFA
GNFA \rightarrow RegEX
Summary
$7 / 26$

2/2) NFA \rightarrow DFA

The subset construction method

Given an NFA $N=\left(Q, \Sigma, \delta, q_{\text {start }}, F\right)$, we can construct an equivalent DFA $D=\left(Q^{\prime}, \Sigma, \delta^{\prime},\left\{q_{\text {start }}\right\}, F^{\prime}\right)$ as follows:

■ $Q^{\prime} \subset 2^{Q}$ is the set of all possible states that can be reached from $q_{\text {start }}$.
\square For each entry $(A, s) \in Q^{\prime} \times \Sigma$ in the transition table of D, we find the result $\delta^{\prime}(A, s)$ as the union of all $\delta(q, s)$ for all $q \in A$, i.e.

$$
\delta^{\prime}(A, s)=\bigcup_{q \in A} \delta(q, s)
$$

- $F^{\prime} \subset Q^{\prime}$ contains all the sets that have a state from F.

Regular Languages

Theorem: The equivalence of NFAs and DFAs
 Every NFA has an equivalent DFA.

Theorem: NFAs and DFAs recognize the same languages
NFAs and DFAs are equivalent in terms of languages recognition.

Definition (Regular Languages)

Review

Image of a function
DFA $\leftrightarrow N F A$
1/2) DFA \rightarrow NFA 2/2) DFA $\leftarrow N F A$

A language is regular if and only if some NFA recognizes it.

Extension: ε-NFAs \longleftrightarrow Regular Languages

We allow ε as a transition label.

Definition of ε-NFAs

An ε-NFA is defined by the 5 -tuple $\left(Q, \Sigma, \delta, q_{\text {start }}, F\right)$ like normal NFAs, but where the transition function is given by

$$
\delta: Q \times \Sigma_{\varepsilon} \rightarrow 2^{Q} \quad \text { where } \Sigma_{\varepsilon}=\Sigma \cup\{\varepsilon\} .
$$

These can also be converted to NFAs
using the subset construction method.
These can also be converted to NFAs
using the subset construction method. So we can also say:

Definition (Regular Languages)

A language is regular if and only if some ε-NFA recognizes it.

Review
Image of a function
$D F A \leftrightarrow N F A$
1/2) DFA \rightarrow NFA
2/2) DFA \leftarrow NFA

Regular

Languages
ε-NFAs
The Regular
Operations
Regular
Expressions
RegEx \rightarrow NFA
NFA \rightarrow RegEx GNFA
NFA \rightarrow GNFA GNFA \rightarrow RegEX Summary

Regular operations

Let A and B be two languages.
The following operations are called the regular operations:
1 Union: $A \cup B=\{x \mid x \in A$ or $x \in B\}$
i.e. strings from A or from B.

Image of a function
DFA $\leftrightarrow N F A$ 1/2) DFA \rightarrow NFA 2/2) DFA $\leftarrow N F A$

Regular

3 Star: $A^{*}=\left\{x_{1} x_{2} \cdots x_{n} \mid n \geq 0\right.$ and each $\left.x_{i} \in A\right\}$
i.e. concatenations of zero or more strings from A.

$$
A^{*}=\{\varepsilon\} \cup A \cup A A \cup A A A \cup \cdots=A^{0} \cup A^{1} \cup A^{2} \cup A^{3} \cup \cdots
$$

Regular Languages - "Closure" under the regular operations

If L and M are two regular languages then the following are also regular
$1 L \cup M$
$2 L M$
3 L*
(Union: string in L or M)
(Concatenation: string from L followed by string M)
(Star: $L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \cdots$)

Theorem

The class of regular languages is closed under the regular operations (union, concatenation, and star).

Review

Image of a function
DFA $\leftrightarrow N F A$ 1/2) DFA \rightarrow NFA 2/2) DFA \leftarrow NFA

Regular

Proof outline: Next 3 slides.

Proof (1/3): Closure under Union

Review
Image of a function
DFA $\leftrightarrow N F A$ 1/2) DFA \rightarrow NFA 2/2) DFA $\leftarrow N F A$

Regular
Languages
ε-NFAs
The Regular
Operations
Regular
Expressions
RegEx \rightarrow NFA
NFA \rightarrow RegEx
GNFA
NFA \rightarrow GNFA
GNFA \rightarrow RegEx
Summary
$13 / 26$

Proof (2/3): Closure under Concatenation

$L_{1} L_{2}$

DFA \leftrightarrow NFA \leftrightarrow RegEx

Review
Image of a function
DFA $\leftrightarrow N F A$ 1/2) DFA \rightarrow NFA 2/2) DFA \leftarrow NFA

Regular
Languages
ε-NFAs
The Regular Operations

Regular
Expressions
RegEx \rightarrow NFA
NFA \rightarrow RegEx
GNFA
NFA \rightarrow GNFA
GNFA \rightarrow RegEx
Summary

Proof (3/3): Closure under Star
DFA \leftrightarrow NFA
\leftrightarrow RegEx

Review

Image of a function
DFA $\leftrightarrow N F A$ 1/2) DFA \rightarrow NFA 2/2) DFA $\leftarrow N F A$

Regular

Languages
ε-NFAs
The Regular
Operations
Regular
Expressions
RegEx \rightarrow NFA
NFA \rightarrow RegEx
GNFA
NFA \rightarrow GNFA
GNFA \rightarrow RegEx
Summary
$15 / 26$

Regular Expressions

We can describe NFAs using Finite Automata (Accept/Reject strings).
We can also describe them using Regular Expressions (Generate strings).

Review

Image of a function
DFA $\leftrightarrow N F A$
1/2) DFA \rightarrow NFA
Let $\Sigma=\{0,1\}$
\square The finite language $\{1,11,00\}: 1+11+00$
■ Strings ending with $0: \Sigma^{*} 0$
(Pattern:0)

■ Strings starting with 11: $11 \Sigma^{*}$
■ Strings of even length: $(\Sigma \Sigma)^{*}$

Definition (Regular Expressions - Recursive definition)

R is said to be a regular expression (RegEx) if and only if

- R is \emptyset or ε or a single symbol from the alphabet
$■$ or R is the union, concatenation or star of other ("smaller") RegEx's.

Regular Languages \longleftrightarrow Regular Expressions

Notation for writing RegEx's:
\square Union: Plus: $\square+\square$
\square Concatenation: Juxtaposition: ■
■ Star: * as a superscript: ■*
Unless brackets are used to explicitly denote precedence, the operators precedence for the regular operations is: star, concatenation, then union.

Theorem

A language is regular if and only if some regular expression describes it.
Constructive proof in two parts:
■ (1/2): RegEx \rightarrow NFA
■ (2/2): NFA \rightarrow RegEx

Proof (1/2): RegEx \rightarrow NFA

We need to cover all the 6 possible cases from the definition of RegEx's:

Base cases:

$1 R=\emptyset$
$2 R=\varepsilon$

$3 R=$ a where $a \in \Sigma$ (i.e. a is a symbol from the alphabet)

Proof (1/2): RegEx \rightarrow NFA $-A+B$

L_{2}

DFA \leftrightarrow NFA
\leftrightarrow RegEx

Review
Image of a function
DFA $\leftrightarrow N F A$ 1/2) DFA \rightarrow NFA 2/2) DFA $\leftarrow N F A$

Regular
Languages
ε-NFAs
The Regular
Operations
Regular
Expressions
RegEx \rightarrow NFA
NFA \rightarrow RegEx
GNFA
NFA \rightarrow GNFA
GNFA \rightarrow RegEX
Summary

19/26

Proof (1/2): RegEx \rightarrow NFA $-A B \quad$ (Concatenation)

L2

Proof (1/2): RegEx \rightarrow NFA $-A^{*}$
(Star)
DFA \leftrightarrow NFA
\leftrightarrow RegEx

Review

Image of a function
DFA $\leftrightarrow N F A$ 1/2) DFA \rightarrow NFA 2/2) DFA \leftarrow NFA

Regular
Languages
ε-NFAs
The Regular
Operations
Regular
Expressions
RegEx \rightarrow NFA
NFA \rightarrow RegEX
GNFA
NFA \rightarrow GNFA
GNFA \rightarrow RegEx
Summary

Proof (2/2): NFA \rightarrow RegEx

We introduce a machine to help us produce RegEx's for any given NFA:

Generalized Nondeterministic Finite Automaton (GNFA)

GNFAs are similar to NFAs but have the following restrictions/extensions:
1 Only one accept state.
2 The initial state has no in-coming transitions.
3 The accept state has no out-going transitions.
4 The transitions are RegEx's, rather than just symbols from the alphabet.

Review

Image of a function
DFA $\leftrightarrow N F A$
1/2) DFA \rightarrow NFA 2/2) DFA \leftarrow NFA

Regular
Languages

Proof (2/2): NFA \rightarrow RegEx —- Converting NFAs into GNFAs

Example (NFA \rightarrow GNFA)

Proof (2/2): NFA \rightarrow RegEx —- Reducing GNFAs into RegEx's

Key observation: Given a GNFA, the "inner states" may be removed from it, one at a time, with regular expressions replacing each removed transition. We end with only the initial and accept states, and a single transition between them, labelled with a regular expression.

The GNFA Algorithm

1 Convert the NFA to a GNFA.
2 Remove the "inner states," one at a time, and replace the affected transitions using equivalent RegEx's.
3 Repeat until only two states (initial and accept) remain.
4 The RegEx on the only remaining transition is the required RegEx.

Example

DFA \leftrightarrow NFA \leftrightarrow RegEx

Review
Image of a function
DFA $\leftrightarrow N F A$ 1/2) DFA \rightarrow NFA 2/2) DFA \leftarrow NFA

Regular

Languages
ε-NFAs
The Regular
Operations
Regular
Expressions RegEx \rightarrow NFA NFA \rightarrow RegEx
GNFA
NFA \rightarrow GNFA
GNFA \rightarrow RegEx
Summary
$25 / 26$

Summary

■ Introduced GNFAs as a means of converting NFAs to equivalent RegEx's
■ Demonstrated how to turn an NFA into a GNFA
■ Demonstrated how to obtain RegEx's from a GNFA by removing states one at a time

- The set of regular languages is exactly equal to the set of languages described by some RegEx/GNFA/ ε-NFA/NFA/DFA.

Regular Languages

The class of regular languages can be:
1 Recognized by NFAs.
(equiv. GNFA or ε-NFA or NFA or DFA).

2 Described using Regular Expressions.
3 Generated using Linear Grammars. (See this later!)

