Models of Computation: DFAs & NFAs

Terminology

0/21

Models of Computation: DFAs & NFAs Deterministic/Non-deterministic Finite Automata

Dr Kamal Bentahar

School of Computing, Electronics and Mathematics Coventry University

Lecture 2

Models of Computation: DFAs & NFAs

Decision problems

Language Language recognition Terminology

Models of Computation

DFAs Example Informal definition Important rules JFLAP Formal definition Example Notation: Functions

NFAS Power set Informal description Formal definition Examples JFLAP

"Problems"...

Last week: We can focus on **decision problems** only.

Decision problems

A yes/no question on a set of inputs.

Given a **search space** and a desired **property**, **decide** whether the *search space* contains an item with that *property* or not.

Models of Computation: DFAs & NFAs

Decision problems

Language recognition Terminology

Models of Computation

DFAs Example Informal definition Important rules JFLAP Formal definition Example Notation: Functions

NFAs

Power set Informal description Formal definition Examples JFLAP

Encoding problems

The question will be presented as a **string**:

A sequence of symbols from an alphabet.

Think about words from the English language:

- Alphabet: {*a*, *A*, *b*, *B*, *c*, *C*, ..., *x*, *X*, *y*, *Y*, *z*, *Z*}.
- Example words: Hello, Coventry, and, or, a, ...

Notation

Notation	Meaning	Example usage	
Σ	Alphabet: finite set of symbols.	$\Sigma = \{0, 1\}$ $\Sigma = \{a\}$	
w or s	String made of symbols from Σ	01100 aaa	
W	Length of the string w	00 = 2 <i>a</i> = 1	
ε	Empty string – has no symbols.	arepsilon = 0	
xy	Concatenation of x and y	$x = 0, y = 10 \implies xy = 010$	

Models of Computation: DFAs & NFAs

Decision problems

Language Language recognition Terminology

Models of Computation

DFAs

Example Informal definition Important rules JFLAP Formal definition Example Notation: Functions

NFAs

Power set Informal description Formal definition Examples

Concept of "language"

Think about words from the English language again:

- Alphabet: {*a*, *A*, *b*, *B*, *c*, *C*, ..., *x*, *X*, *y*, *Y*, *z*, *Z*}.
- However, not all strings over this alphabet are valid words. In English: *Hello* is valid, but *olleH* is not.
- Divide all possible instances into yes-instances and no-instances.
- \blacksquare \rightarrow English is the **set** of "yes-instances over its alphabet."
- English is a subset of "all possible strings over its alphabet."

Models of Computation: DFAs & NFAs

Decision problems

Languages

Language recognition Terminology

Models of Computation

DFAs

Example Informal definition Important rules JFLAP Formal definition Example Notation: Functions

VFAs

Power set Informal description Formal definition Examples JFLAP

Concept of "language"

In general:

- A (decision) problem is a set of instances and a required property.
- Each problem instance is represented by a string over an alphabet Σ .
- A yes-instance satisfies the property required by the problem.
- A no-instance does not satisfy the property required by the problem.
- The set of yes-instances defines a **language** associated to the **problem**.
- We say that the yes-instances *belong* to the language.
- No-instances (including invalid strings) *do not belong* to the language.

Models of Computation: DFAs & NFAs

Decision problems

Languages

Language recognition Terminology

Models of Computation

DFAs Example Informal definition Important rules JFLAP Formal definition Example Notation: Functions

NFAs Power set Informal description Formal definition Examples JFLAP

Language recognition

Decision problems can be encoded as problems of language recognition.

Given $n = 12_{10} = 1100_2$, the answer is **yes** because $12 = 2 \times 6$. Given $n = 13_{10} = 1101_2$, the answer is **no** because $13 = 2 \times 6 + 1$.

 $Even = \{0, 10, 100, 110, 1000, \ldots\}$

Problem: Is a given number even?

Instance: A number *n* (encoded in binary). **Question:** Is *n* even?

(i.e. is it divisible by 2?)

Models of Computation: DFAs & NFAs

Decision problems

Language recognition Terminology

Models of Computation

DFAs Example Informal defin

Informal definition Important rules JFLAP Formal definition Example Notation: Functions

NFAs

Power set Informal description Formal definition Examples JFLAP

and

Here:

Example

Even C Numbers

Numbers = $\{0, 1, 10, 11, 100, 101, 110, 111, 1000, ...\}$

Language recognition

Decision problems can be encoded as problems of language recognition.

Problem: Is a given number even?

Instance: A number *n* (encoded in binary). **Question:** Is *n* even?

- n can be represented as a string in binary using only two symbols: 0, 1.
- We can write a decision procedure to decide if this string belongs to the language of yes instances.
 - 1: $b \leftarrow$ least significant bit of n.
 - 2: if b = 0 then
 - 3: return yes
 - 4: **else**
 - 5: return no
 - 6: end if

(i.e. is it divisible by 2?)

Models of Computation: DFAs & NFAs

Decision problems

Language recognition Terminology

Models of Computation

DFAs Example Informal definition Important rules JFLAP Formal definition Example

NFAs

Power set Informal description Formal definition Examples JFLAP

Terminology

- Languages are defined over an **alphabet** Σ .
- Σ*: set of all possible strings over Σ, whose length is finite. ("Sigma star")

If $\Sigma = \{0, 1\}$ then $\Sigma^* = \{\underbrace{\varepsilon}_{\text{Length 0}}, \underbrace{0, 1}_{\text{Length 1}}, \underbrace{00, 01, 10, 11}_{\text{Length 2}}, \underbrace{000, 001, 010, 011, 100, 101}_{\text{Length 3}}, \ldots\}$

A language can be regarded as "a subset of Σ*".

Example

If $\Sigma = \{0,1\}$ then the language of even numbers $\textit{Even} \subset \Sigma^*$ is:

 $\textit{Even} = \{0, 00, 10, 000, 010, 100, \ldots\}$

Models of Computation: DFAs & NFAs

Decision problems

Language Language recognition

Models of Computation

DFAs Example Informal definition Important rules JFLAP Formal definition Example

NFAS Power set Informal description Formal definition Examples JFLAP

Concept of "Model of Computation"

• We want to think more precisely about **problems** and **computation**.

- \blacksquare \rightarrow categorise them by the **type of computation** which resolves them.
- \rightarrow idea of models of computation:
 We introduce simple, theoretical machines and study their limits.
 - Far simpler than Von Neumann Machines, ...
 - ... but some have greater power than Von Neumann machines, ...
 - but cannot be created in reality!
- Our first model is the **Deterministic Finite Automaton** (DFA) model.

Models of Computation: DFAs & NFAs

Decision problems

Language recognition Terminology

Models of Computation

DFAs

Example Informal definition Important rules JFLAP Formal definition Example Notation: Functions

NFAs

Power set Informal description Formal definition Examples JFLAP

Informal definition of DFAs

The Deterministic Finite Automaton (DFA) model

A **directed and labelled graph** which describes how a string of symbols from an alphabet will be processed.

- Each vertex is called a **state**.
- Each directed edge is called a transition.
 - The edges are labelled with symbols from the alphabet.
- Each state must have **exactly one** transition defined for **every** symbol.
- <u>One</u> state is designated as the start state.
- Some states are designated as accept states.
- A string is processed symbol by symbol, following the respective transitions:
 - At the end, if we land on an accept state then the string is accepted,
 - otherwise it is rejected.

Models of Computation: DFAs & NFAs

Decision problems

Language recognition Terminology

Models of Computation

Example Informal definition Important rules JFLAP Formal definition Example Notation: Functions

NFAs Power set Informal description Formal definition Examples JFLAP

- Each state must have exactly one transition defined for each symbol.
- There must be **exactly one start state**.
- There may be **multiple accept states**.
- There may be more than one symbol defined on a single transition.

Models of Computation: DFAs & NFAs

Decision problems

Language Language recognition Terminology

Models of Computation

DFAs Example Informal definition Important rules JFLAP Formal definition Example Notation: Functions

NFAs Power set Informal description Formal definition Examples

JFLAP simulation time!

Example

Let us build DFAs over the alphabet $\{0, 1\}$ to recognize strings that:

- begin with 0;
- end with 1;
- either begin or end with 1;
- begin with 1 and contain at least one 0.

Models of Computation: DFAs & NFAs

Decision problems

Language recognition Terminology

Models of Computation

DFAs Example Informal definition Important rules

JFLAP Formal definition Example Notation: Functions

NFAs Power set Informal description Formal definition Examples

Formal definition of DFAs

Formal definition of a DFA

A Deterministic Finite Automaton (DFA) is defined by the 5-tuple $(Q, \Sigma, \delta, q_{start}, F)$ where:

- Q is a <u>finite set</u> called the set of states.
- **\Sigma** is a <u>finite set</u> called the **alphabet**.
- $\delta: \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{Q}$ is a total function called the transition function.
- *q*_{start} is the unique **start state**.
- **F** is the set of accepting states.

Recall:

- **Total function** means it is defined for "all its inputs."
- **\Sigma, \delta:** Sigma, delta.
- $\blacksquare \in \subseteq$: "element of a set", "subset of a set, or equal".

Models of Computation: DFAs & NFAs

Decision problems

Language recognition Terminology

Models of Computation

JFAS Example Informal definition Important rules JFLAP Formal definition Example Notation: Functions

 $(q_{\text{start}} \in Q)$

(Greek letters)

(Set notation)

 $(F \subset Q)$

NFAs Power set Informal description Formal definition Examples JFLAP

Example (Formal specification of a DFA)

This DFA is defined by the 5-tuple $(Q, \Sigma, \delta, q_{start}, F)$ where

- $(\mathbf{Q}, \mathbf{Z}, \mathbf{0}, \mathbf{q}_{start}, \mathbf{r})$ when
 - $\blacksquare Q = \{A, B, C\}$
 - $\bullet \Sigma = \{a, b\}$

δ (<i>state</i> , <i>symbol</i>) is given by the table:							
		а	b				
\rightarrow	A	A	В				
*	A B C	B	С				
*	С	C	Α				

- \rightarrow indicates the start state * the accept state(s).
- $q_{start} = A$
- *F* = {*B*, *C*}

Models of Computation: DFAs & NFAs

Decision problems

Language Language recognition Terminology

Models of Computation

DFAs

Example Informal definition Important rules JFLAP Formal definition Example

Notation: Function

Power set Informal description Formal definition Examples JFLAP

Notation: Functions/Maps

- $\delta \colon \boldsymbol{Q} \times \boldsymbol{\Sigma} \to \boldsymbol{Q}$ means that:
 - the function δ takes a pair (q, s) as input where:
 - q is a state from Q
 - **s** is an *alphabet symbol* from Σ ,
- and returns a state from Q as the result.

This is usually given as a table, e.g.

We put \rightarrow next to the start state, and * next to the accept states. This means that:

$$\delta(q_0, a) = q_0$$

 $\delta(q_0, b) = q_1$
: :

Models of Computation: DFAs & NFAs

Decision problems

Language recognition Terminology

Models of Computation

DFAs Example Informal definition Important rules JFLAP Formal definition Example

Notation: Functions

NFAs Power set Informal description Formal definition Examples JFLAP

Recall: Power set - set of all subsets

Models of Computation: DFAs & NFAs

The Nondeterministic Finite Automaton (NFA) model

From the design point of view: NFAs are almost the same as DFAs.

DFA: every state has **one and only one outward transition** defined **for each symbol**.

NFA: every state has zero or more transitions defined for each symbol.

Formally:

DFA: $\delta: \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{Q}$ is a **total** function, i.e.

1 δ is defined for *every* pair (*q*, *s*) from $Q \times \Sigma$

2 δ sends (q, s) to a **state** from Q. (exactly one state, no more, no less)

NFA: $\delta: Q \times \Sigma \rightarrow 2^Q$ is a **partial** function, i.e.

1 δ is not necessarily defined for every pair (q, s) from $Q \times \Sigma$.

2 δ sends (q, s) to a **subset of** Q.

(many, one, or no states)

Models of Computation: DFAs & NFAs

Decision problems

Language Language recognition Terminology

Models of Computation

DFAs

Example Informal definition Important rules JFLAP Formal definition Example Notation: Eurotions

NFAs Power set Informal description Formal definition Examples JFLAP

Formal definition of NFAs

Definition of an NFA

- A *Nondeterministic Finite Automaton* (NFA) is defined by the 5-tuple $(Q, \Sigma, \delta, q_{\text{start}}, F)$ where
 - Q is a <u>finite set</u> called the set of states
 - **\Sigma** is a <u>finite set</u> called the **alphabet**
 - $\delta: \mathbf{Q} \times \Sigma \to \mathbf{2}^{\mathbf{Q}}$ is a partial function called the transition function
 - **q**_{start} is the unique **start state**.
 - **F** is the **<u>set</u> of accepting states**.

Decision problems

Language Language recognition Terminology

> Models of Computation

DFAs

 $(q_0 \in Q)$

 $(F \subset Q)$

Example Informal definition Important rules JFLAP Formal definition Example Notation: Functions

NFAs Power set Informal description Formal definition Examples

JFLAF

NFA example

Models of Computation: DFAs & NFAs

Decision problems

Language recognition Terminology

Models of Computation

DFAs Example Informal definition Important rules JFLAP Formal definition

Example Notation: Functions

NFAs Power set Informal description Formal definition Examples

JFLAP

NFA example

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6 \\ \Sigma = \{a, b\} \\ q_{\text{start}} = q_0 \\ F = \{q_4, q_5\}$$

Models of Computation: DFAs & NFAs

Decision problems

Language recognition Terminology

Models of Computation

DFAs Example Informal definition Important rules JFLAP Formal definition Example Notation: Functions

NFAs Power set Informal description Formal definition Examples

JFLAP simulation time!

Example

Let us build DFAs over the alphabet $\{0, 1\}$ to recognize strings that:

- begin with 0;
- end with 1;
- either begin or end with 1;
- begin with 1 and contain at least one 0.

Models of Computation: DFAs & NFAs

Decision problems

Language recognition Terminology

Models of Computation

DFAs Example

Informal definition Important rules JFLAP Formal definition Example Notation: Functions

NFAs Power set Informal description Formal definition Examples

Next week...

Surprise: NFAs recognize exactly the same languages as DFAs!

Models of Computation: DFAs & NFAs

Decision problems

Language recognition Terminology

Models of Computation

DFAs Example Informal definition Important rules

Important rules JFLAP Formal definition Example Notation: Functions

NFAS Power set Informal description Formal definition Examples