Models of Computation: DFAs \& NFAs

Deterministic/Non-deterministic Finite Automata

Dr Kamal Bentahar

School of Computing, Electronics and Mathematics
Coventry University

Lecture 2

Languages
Language recognition

Terminology
Models of
Computation
DFAs
Example
Informal definition Important rules JFLAP
Formal definition
Example
Notation: Functions
NFAs
Power set
Informal description Formal definition Examples JFLAP
$0 / 21$

Last week: We can focus on decision problems only.

Decision problems

A yes/no question on a set of inputs.
Given a search space and a desired property, decide whether the search space contains an item with that property or not.

Encoding problems

- The question will be presented as a string:

A sequence of symbols from an alphabet.
Think about words from the English language:
\square Alphabet: $\{a, A, b, B, c, C, \ldots, x, X, y, Y, z, Z\}$.

- Example words: Hello, Coventry, and, or, a, ...
- Notation

Notation Meaning Example usage

Σ Alphabet: finite set of symbols. $\quad \Sigma=\{0,1\} \quad \Sigma=\{a\}$ w or s String made of symbols from Σ
$|w| \quad$ Length of the string w
ε Empty string - has no symbols
$|00|=2$
$|a|=1$
$x y$ Concatenation of x and y
$|\varepsilon|=0$
$x=0, y=10 \Longrightarrow x y=010$

Concept of "language"

Think about words from the English language again:
■ Alphabet: $\{a, A, b, B, c, C, \ldots, x, X, y, Y, z, Z\}$.
■ However, not all strings over this alphabet are valid words.
In English: Hello is valid, but olleH is not.
■ Divide all possible instances into yes-instances and no-instances.
$\square \rightarrow$ English is the set of "yes-instances over its alphabet."
$■ \rightarrow$ English is a subset of "all possible strings over its alphabet."

Concept of "language"

- A (decision) problem is a set of instances and a required property.

■ Each problem instance is represented by a string over an alphabet Σ.

- A yes-instance satisfies the property required by the problem.
- A no-instance does not satisfy the property required by the problem.
- The set of yes-instances defines a language associated to the problem.
- We say that the yes-instances belong to the language.
- No-instances (including invalid strings) do not belong to the language.

Language recognition

Instance: A number n (encoded in binary).
Question: Is n even?

(i.e. is it divisible by 2?)

Example

\square Given $n=12_{10}=1100_{2}$, the answer is yes because $12=2 \times 6$.
\square Given $n=13_{10}=1101_{2}$, the answer is no because $13=2 \times 6+1$.
Languages Language recognition Terminology

Models of

Computation

DFAs
Example
Informal definition

$$
\begin{aligned}
\text { Numbers } & =\{0,1,10,11,100,101,110,111,1000, \ldots\} \\
\text { Even } & =\{0,10,100,110,1000, \ldots\}
\end{aligned}
$$

and

Language recognition

Decision problems can be encoded as problems of language recognition.

Problem: Is a given number even?

Instance: A number n (encoded in binary).
Question: Is n even?
(i.e. is it divisible by 2?)

Languages
Language recognition

- n can be represented as a string in binary using only two symbols: 0,1 .
- We can write a decision procedure to decide if this string belongs to the language of yes instances.

1: $b \leftarrow$ least significant bit of n.
2: if $b=0$ then
3: return yes
4: else
5: return no
6: end if

Terminology

Models of
■ Languages are defined over an alphabet Σ.
■ Σ^{*} : set of all possible strings over Σ, whose length is finite.
Decision
problems
Languages

$$
\text { If } \Sigma=\{0,1\} \text { then }
$$

$$
\Sigma^{*}=\{\underbrace{\varepsilon}_{\text {Length } 0}, \underbrace{0,1}_{\text {Length } 1}, \underbrace{00,01,10,11}_{\text {Length } 2}, \underbrace{000,001,010,011,100,101}_{\text {Length } 3}, \ldots\}
$$

■ A language can be regarded as "a subset of $\sum^{* *}$.

Example

If $\Sigma=\{0,1\}$ then the language of even numbers Even $\subset \Sigma^{*}$ is:

$$
\text { Even }=\{0,00,10,000,010,100, \ldots\}
$$

Concept of "Model of Computation"

■ We want to think more precisely about problems and computation.
$\square \rightarrow$ categorise them by the type of computation which resolves them.
$\square \rightarrow$ idea of models of computation:
We introduce simple, theoretical machines and study their limits.

- Far simpler than Von Neumann Machines, ...

■ ... but some have greater power than Von Neumann machines, ...
■ but cannot be created in reality!
$■$ Our first model is the Deterministic Finite Automaton (DFA) model.

The Deterministic Finite Automaton (DFA) model

Example (Is a given binary number even?)

Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100

Decision
problems
Languages
Language
recognition
Terminotogy
Models of
Computation
DFAs
Example
Informal definition
Important rules
JFLAP
Formal definition
Example
Notation: Functions
NFAs
Power set
Informal description
Formal definition
Examples
JFLAP

9/21

Informal definition of DFAs

The Deterministic Finite Automaton (DFA) model

A directed and labelled graph which describes how a string of symbols from an alphabet will be processed.

Decision

- otherwise it is rejected.

Important rules for DFAs

■ Each state must have exactly one transition defined for each symbol.
■ There must be exactly one start state.
■ There may be multiple accept states.
■ There may be more than one symbol defined on a single transition.

JFLAP simulation time!

Example

Let us build DFAs over the alphabet $\{0,1\}$ to recognize strings that:
■ begin with 0 ;

- end with 1 ;
- either begin or end with 1 ;

■ begin with 1 and contain at least one 0 .

Formal definition of DFAs

Formal definition of a DFA

A Deterministic Finite Automaton (DFA) is defined by the 5-tuple $\left(Q, \Sigma, \delta, q_{\text {start }}, F\right)$ where:
$\square Q$ is a finite set called the set of states.
$\square \Sigma$ is a finite set called the alphabet.
■ $\delta: Q \times \Sigma \rightarrow Q$ is a total function called the transition function.

- $q_{\text {start }}$ is the unique start state.
$\square F$ is the set of accepting states.
$\left(q_{\text {start }} \in Q\right)$
$(F \subseteq Q)$

Recall:
■ Total function means it is defined for "all its inputs."
$\square \Sigma, \delta$: Sigma, delta.
(Greek letters)
■ \in, \subseteq : "element of a set", "subset of a set, or equal". (Set notation)

Example (Formal specification of a DFA)

Models of Computation: DFAs \& NFAs
This DFA is defined by the 5 -tuple $\left(Q, \Sigma, \delta, q_{\text {start }}, F\right)$ where

Decision
problems
■ $Q=\{A, B, C\}$
■ $\Sigma=\{a, b\}$

- δ (state, symbol) is given by the table:

		a
\rightarrow	b	
$*$	B	A
$*$	C	C
$*$	C	A

\rightarrow indicates the start state

* the accept state(s).

■ $q_{\text {start }}=A$
■ $F=\{B, C\}$
Languages
Language
recognition
Terminology
Models of
Computation
DFAS
Example
Informal definition
Important rules
JFLAP
Formal definition
Example
Notation: Functions
NFAs
Power set
Informal description Formal definition
Examples
JFLAP

Notation: Functions/Maps

$\delta: Q \times \Sigma \rightarrow Q$ means that:
\square the function δ takes a pair (q, s) as input where:
$\square q$ is a state from Q

- s is an alphabet symbol from Σ,
\square and returns a state from Q as the result.
This is usually given as a table, e.g.

	a	b
$\rightarrow q_{0}$	q_{0}	q_{1}
$* q_{1}$	q_{0}	q_{2}
\vdots	\vdots	\vdots

We put \rightarrow next to the start state, and $*$ next to the accept states.
This means that:

$$
\begin{aligned}
\delta\left(q_{0}, a\right) & =q_{0} \\
\delta\left(q_{0}, b\right) & =q_{1}
\end{aligned}
$$

Recall: Power set - set of all subsets
Models of Computation: DFAs \& NFAs
2^{Q} is the set of all subsets of Q
(called: the power set of Q)
Example
If $Q=\{A, B, C\}$ then

$$
2^{Q}=\{\underbrace{\emptyset}_{\text {Empty set }}, \underbrace{\{A\},\{B\},\{C\}}_{\text {One element each }}, \underbrace{\{A, B\},\{A, C\},\{B, C\}}_{\text {Two elements each }}, \underbrace{\{A, B, C\}}_{Q}\} .
$$

It has 8 elements: $2^{\text {size of } Q}=2^{\# Q}=2^{3}=8$.

Decision

problems
Languages

The Nondeterministic Finite Automaton (NFA) model

From the design point of view: NFAs are almost the same as DFAs.
DFA: every state has one and only one outward transition defined for each symbol.
NFA: every state has zero or more transitions defined for each symbol.

Formally:
DFA: $\delta: Q \times \Sigma \rightarrow Q$ is a total function, i.e.
1δ is defined for every pair (q, s) from $Q \times \Sigma$
2δ sends (q, s) to a state from Q. (exactly one state, no more, no less)
NFA: $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is a partial function, i.e.
1δ is not necessarily defined for every pair (q, s) from $Q \times \Sigma$.
2δ sends (q, s) to a subset of Q.
(many, one, or no states)

Formal definition of NFAs

Definition of an NFA
A Nondeterministic Finite Automaton (NFA) is defined by the 5-tuple $\left(Q, \Sigma, \delta, q_{\text {start }}, F\right)$ where

- Q is a finite set called the set of states
$\square \Sigma$ is a finite set called the alphabet
$\square \delta: Q \times \Sigma \rightarrow 2^{Q}$ is a partial function called the transition function
- $q_{\text {start }}$ is the unique start state.
$■ F$ is the set of accepting states.

NFA example

Decision

problems
Languages
Language
recognition
Terminology
Models of
Computation
$Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
$\Sigma=\{a, b\}$
$q_{\text {start }}=q_{0}$
$F=\left\{q_{2}\right\}$

	a	b
$\rightarrow q_{0}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}\right\}$
q_{1}	\emptyset	$\left\{q_{2}\right\}$
$* q_{2}$	$\left\{q_{2}\right\}$	$\left\{q_{2}\right\}$

DFAS

Example
Informal definition
Important rules
JFLAP
Formal definition

Example

Notation: Functions
NFAs
Power set
Informal description
Formal definition
Examples
JFLAP

19/21

NFA example

Models of Computation: DFAs \& NFAs

$\delta:$| | a | b |
| :---: | :---: | :---: |
| $\rightarrow q_{0}$ | $\left\{q_{1}, q_{2}\right\}$ | \emptyset |
| q_{1} | $\left\{a_{2}\right\}$ | \emptyset |
| q_{2} | \emptyset | $\left\{q_{5}\right\}$ |
| q_{3} | \emptyset | $\left\{q_{4}\right\}$ |
| $* q_{4}$ | $\left\{q_{4}\right\}$ | $\left\{q_{4}\right\}$ |
| $* q_{5}$ | $\left\{q_{6}\right\}$ | \emptyset |
| q_{6} | $\left\{q_{6}\right\}$ | $\left\{q_{6}\right\}$ |

$$
\begin{aligned}
Q & =\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}\right\} \\
\Sigma & =\{a, b\} \\
q_{\text {start }} & =q_{0} \\
F & =\left\{q_{4}, q_{5}\right\}
\end{aligned}
$$

Decision

problems

Languages

Language
recognition
Terminology
Models of

Computation

DFAS

Example

Informal definition
Important rules JFLAP

Formal definition

Example

Notation: Functions

NFAs

Power set

Informal description

Formal definition

Examples
JFLAP

20/21

JFLAP simulation time!

Example

Let us build DFAs over the alphabet $\{0,1\}$ to recognize strings that:
■ begin with 0 ;

- end with 1 ;
- either begin or end with 1 ;

■ begin with 1 and contain at least one 0 .

Next week...

Models of

Surprise: NFAs recognize exactly the same languages as DFAs!

