Introduction — Problems!

Dr Kamal Bentahar

School of Computing, Electronics and Mathematics
Coventry University
Lecture 1

Some fun problems

Travelling Salesman Problem

Some fun problems TSP Hamiltonian Cycle Subset-Sum Problem Partition Problem More problems
 Classification of problems Search problems Types of problems Problems vs Instances
 Notation
 Greek alphabet Numeric

Set
Set and logic
Functions
Strings
Graphs
Next.
$1 / 21$

Travelling Salesman Problem

Some fun

 problems TSP Hamiltonian Cycle Subset-Sum Problem Partition Problem More problemsClassification of problems Search problems Types of problems

Problems vs Instances

Notation

Greek alphabet Numeric

Travelling Salesman Problem

Some fun problems TSP Hamiltonian Cycle Subset-Sum Problem Partition Problem More problems

Classification of problems Search problems Types of problems

Problems vs Instances

Notation
Greek alphabet Numeric Logic
Set
Set and logic
Functions
Strings
Graphs
Next.
$1 / 21$

Travelling Salesman Problem

Some fun
problemsTSP
Hamiltonian CycleSubset-Sum Problem More problems
Classification of problems Search problems Types of problems
Problems vs Instances
Notation
Greek alphabet
Numeric
Logic
Set
Set and logic
Functions
Strings
Graphs

Travelling Salesman Problem

Some fun problems

 TSP Hamiltonian Cycle Subset-Sum Problem Partition Problem More problemsClassification of problems Search problems Types of problems

Problems vs
Instances
Notation
Greek alphabet
Numeric
Logic
Set
Set and logic
Functions
Strings
Graphs
Next.
$2 / 21$

Travelling Salesman Problem

- One of the most famous problems in CS.

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?

■ "NP-hard" problem!
Some fun problems TSP
Hamiltonian Cycle Subset-Sum Proble Partition Problem
More problems
Classification of problems Search problems Types of problems

Travelling Salesman Problem - what is the issue?

Number of cities n	Number of paths $(n-1)!/ 2$
3	1
4	3
5	12
6	60
7	360
8	2,520
9	20,160
10	181,440
15	$43,589,145,600$
20	6.082×10^{16}
71	5.989×10^{99}

Some fun

problems
TSP
Hamiltonian Cycle Subset-Sum Problem Partition Problem More problems

Classification of problems Search problems Types of problems Problems vs Instances

Travelling Salesman Problem - what is the issue?

Some fun

 problemsTSP

Hamiltonian Cycle

Subset-Sum Problem
Partition Problem
More problems
Classification of problems
Search problems
Types of problems
Problems vs
Instances
Notation
Greek alphabet
Numeric
Logic
Set
Set and logic
Functions
Strings
Graphs
Next.
$4 / 21$

Icosian Game - Hamiltonian Cycle Problem

by the Irish mathematician William Hamilton (1805-1865)

Problem (Hamiltonian Cycle)
Given a graph, decide if it contains a path that visits every vertex exactly once and terminates at the same starting vertex.

Subset-Sum Problem

Problem (Subset-Sum Problem)

Given a set $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of integers, and an integer t (called target) decide if there is a subset of S whose sum is equal to t.

Example

Given the set $S=\{2,3,5,7,11,13\}$, decide if there is a subset of S whose sum is 15 .

Some fun

problems

Partition Problem

Problem (Partition Problem)

Given a set $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of numbers, decide if it can be partitioned into two sets such that they both have the same sums.

Some fun

Some more examples

Problem (Cliques)

Given a graph and an integer n, decide if it contains a clique with k vertices.
A clique in a graph is a set of vertices for which any two are connected.

Problem (A Diophantine quadratic equation)

Given three positive integers a, b, c, decide if the equation $a x^{2}+b y=c$ has a solution in positive integers.

Problem (Satisfiability)

Given a Boolean expression, decide if there is a way of assigning the values true and false to the variables so that the expression is true.

Some fun

problems
TSP
Hamiltonian Cycle
Subset-Sum Problem Partition Problem More problems

A needle in a haystack - a search problem

Problem:

Given any (finite) haystack H, decide whether H contains a needle.

Exhaustive Search

Search every location within the haystack, in some order, and terminate answering yes if a needle is found.
If the search is completed with no needle found then terminate answering no.

This problem is a decision problem: given some data (the haystack) decide if the data has a certain property (needle containment).

We may divide all possible instances of the problem into yes-instances and no-instances using our process.

Some fun problems TSP
Hamiltonian Cycle Subset-Sum Problem Partition Problem More problems

Classification of problems
Search problems Types of problems

Problems vs Instances

Notation
Greek alphabet

Types of problems

- Decision

■ Search

- Computation/Construction
- Counting

Some fun
problems

Problems vs Problem Instances

1 What is $1+1$?

Some fun

problems
\rightarrow instance of the problem called Addition Problem.
■ not interested in just $1+1$, but $x+y$ in general.
2 What is the shortest route across the rail network from Coventry to London?
\rightarrow instance of the Shortest Path Problem,
3 What is the shortest tour around all the universities in the UK and back to your starting point (by car say)?
\rightarrow instance of the Travelling Salesman Problem.

Problem: Generalization of a problem instance.

Notation: Greek alphabet

Some fun

 problemsΣ Sigma
「 Gamma

Greek alphabet
Numeric
Logic
Set
Set and logic
Functions
Strings
Graphs

Notation: Numeric

$=$ equals
\neq not equal
$<$ less than
\leq less than or equal
$>$ greater than
Subset-Sum Proble
\geq greater than or equal
n ! Factorial of n : $n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1$

Notation: Logic

Some fun problems

Expression
$a \wedge b$
$a \vee b$
$a \oplus b$
$\neg a \quad$ (or \bar{a})
$a \Longrightarrow b$
$a \Longleftrightarrow b$

Meaning

a and b
a or b
a xor b
not a
a implies b, or: if a then b a and b are equivalent, or: " a if and only if b "

Notation: Sets

$\left\{x_{1}, \ldots, x_{n}\right\} \quad$ Finite set consisting of the elements x_{1} until x_{n} $x \in S$ "in", x is a member of the set S
$x \notin S \quad$ "not in", x is not a member of the set S
$A \cup B$ Union of the two sets A and B
$A \cap B \quad$ Intersection of the two sets A and B
$A-B \quad$ Difference of the two sets A and B
$A \times B \quad$ Cartesian product of the two sets A and B
$A \subset B \quad A$ is a subset of B
$|A|$ or \#A Cardinality of the set A, i.e. count of its elements
2^{A} Power set of A, i.e. set of all subsets of A
\mathbb{N} Natural numbers: $\{1,2,3, \ldots\}$
\mathbb{Z} Integers: $\{0,1,-1,2,-2,3,-3, \ldots\}$
Some fun problems
$S^{\prime \prime}$ and $S^{\prime \prime \prime} \quad$ Sets called " S double prime" and " S triple prime"

Notation: Sets and logic notation

Set of items matching pattern and satisfying condition. The | symbol is read "such that"

$$
\begin{aligned}
A \cup B & =\{x \mid x \in A \vee x \in B\} \\
A \cap B & =\{x \mid x \in A \wedge x \in B\} \\
A-B & =\{x \mid x \in A \wedge x \notin B\} \\
A \times B & =\{(a, b) \mid a \in A \wedge b \in B\}
\end{aligned}
$$

More problems
Classification of problems Search problems Types of problems

Notation: Functions

$$
\begin{aligned}
f: A & \rightarrow B \\
x & \mapsto y
\end{aligned}
$$

Some fun problems
$\square A$ is the domain of f, the set of possible inputs.

- B is the range of f, the set of possible outputs.

Similarly

$$
\begin{aligned}
f: X \times Y & \rightarrow R \\
(x, y) & \mapsto r
\end{aligned}
$$

- f is a function that takes as input a pair (x, y) from the set $X \times Y$ and returns an element r from R.

Notation: Strings

Notation	Meaning	Example
Σ	Finite set of symbols	$\Sigma=\{0,1\}$
w	String made of symbols from Σ	010
$\|w\|$	Length of the string w	$\|010\|=3$

Some fun

 problems TSP Hamiltonian Cycle Subset-Sum Problem
Notation: Graphs

$G=(V, E)$, where
■ V : the set of vertices.
■ E : the set of edges.

Here:
■ $V=\{A, B, C, D, E\}$
■ $E=\{(A, B),(A, C),(A, D),(A, E)$,
$(B, C),(B, D),(B, E),(C, D),(C, E),(D, E)\}$

Notation: Graphs

Graph can be:
$■$ directed or undirected.

Some fun problems

Next few weeks. . .

What is a "computer"? What is "computation"?

Some funproblemsTSP
Hamiltonian CyclePartition Problem
More problems
Classification
of problems
Search problems
Types of problems
Problems vs
Instances
Notation
Greek alphabet
NumericLogic
Set
Set and logic
Functions
Strings
Graphs
Next.$21 / 21$

