
Context-Free Languages (CFLs)

You may use JFLAP to help yourself work on these exercises.
You may wish to go through the tutorial sections: “Context-free Grammar” and “Pushdown Automata”
available at https://www.jflap.org/modules/ (accessible through the left yellow navigation pane) or go
through the relevant chapters in the JFLAP book https://www2.cs.duke.edu/csed/jflap/jflapbook/.

Ba
sic

(1) Consider the following PDA

Astart B

C

D E
ε, ε→ ◦

0, ε→ •

1, • → ε

0, ε→ ε

ε, ◦ → ε

1, • → ε

1) Simulate the following strings: (For each step record: the state, the symbol just
read and the stack contents)

0001 00001 001 0011 000011

2) Use set notation to describe the language recognized by this PDA.

{ 0 1 | n ≥ }

3) Produce the formal definition for the above PDA. This should consist of:

� The set of states Q = { , , , , }

� The input alphabet Σ = { , }

� The stack alphabet Γ = { , }

� The start state qstart =

� The set of accept states F = { , }

� The transition function, δ : Q× Σε × Γε → 2Q×Γε , in table form

Σε × Γε : (0, •) (0, ◦) (0, ε) (1, •) (1, ◦) (1, ε) (ε, •) (ε, ◦) (ε, ε)

→ ∗A {(B, ◦)}
B {(C, •)} {(D, ε)}
C

D {(D, ε)}
∗E

The ∅ entries have been left blank to make the table easier to read.

1

https://www.jflap.org/modules/
https://www2.cs.duke.edu/csed/jflap/jflapbook/

Context-Free Languages (CFLs)
Ba

sic
(2) For each of the Context-Free Grammars (CFGs) given below, give answers to the

accompanying questions (together with a brief justification where needed).

1) You are given the following CFG G defined by the productions

R → XRX | S
S → aT b | bT a

T → X TX | X | ε
X → a | b

This grammar generates all the strings over a and b that are not palindromes. A string w is
a palindrome if
w = wR, where
wR is formed
by writing the
symbols of w
in reverse or-
der, e.g. if w =
011 then wR =
110.

Answer the following questions:

1. What are the variables (non-terminals)? V = { , , , }

2. What are the terminals? Σ = { , }

3. What is the start variable?

4. Give three strings in L(G) , ,
(L(G) means: “the language of G”)

5. Give three strings not in L(G) , ,

6. True or False: Notation:
→: in one step;
∗−→: in zero or

more steps

(a) T → aba

(b) T ∗−→ aba

(c) T → T

(d) T ∗−→ T

(e) XXX ∗−→ aba

(f) X ∗−→ aba

(g) T ∗−→ XX

(h) T ∗−→ XXX

(i) S ∗−→ ε

2)

A → bbAb | B
B → aB | ε

Use the grammar to derive the following strings

bbab bbb a6 b4a3b2

3)

S → aAbb | bBaa
A → aAbb | ε
B → bBaa | ε

Use the grammar to derive the following strings (where possible):

aabbbb bbaaaa aabb baa

2

Context-Free Languages (CFLs)
Ba

sic

4) Let Σ = {a,+,×, (,)}. The brackets
here are sym-
bols in the
alphabet, just
like a,+ and ×.

E → E + T | T
T → T × F | F
F → (E) | a

Give parse trees for each of the following strings

a a + a a× a a + a + a (a) + (a + a) ((a))

(3) Convert the following (G)NFAs into regular grammars.

A B C
1

0,1

0,1

A B
aaa

a+b

(4) Design a PDA and a CFG for the following language over Σ = {a, b}

L = {w | w = (ab)n or w = a4nb3n for n ≥ 0}.

Do this in two steps:

1) Explain the idea used, i.e. how does the stack help you?

2) Design a state diagram for the PDA.

3) Design a CFG.

(5) Design PDAs and CFGs for each of the following languages

1) {w | w = bnabn, n ≥ 0}

2) {wcwR | w ∈ {a, b}∗} (so it is defined over the alphabet {a, b, c})

3) {wwR | w ∈ {a, b}∗}

4) The language of palindromes over {a, b}

5) The language of palindromes over {a, b}whose length is a multiple of 3

Hint: Consider the even and odd length cases first.

3

Context-Free Languages (CFLs)
In

te
rm

e
d

ia
te

(1) (Ambiguity) Sometimes a grammar can generate the same string in several differ-
ent ways, with several different parse trees, and likely several different meanings. If
this happens, we say that the string is derived ambiguously in that grammar, which
is then qualified as being an ambiguous grammar.

Consider the CFG
E → E + E | E × E | (E) | a

Derive the string a+a×a in two different ways using parse trees, and explain their
(different) meanings.

Now note that the following alternative CFG is not ambiguous:

E → E + T | T
T → T × F | F
F → (E) | a

What is the parse tree for the previous example string (a+ a× a)?
What is the parse tree for (a+ a)× a?

(2) Design CFGs generating the following languages.

1) The language of all strings over {a, b} with a single symbol ‘b’ located exactly
in the middle of the string.

{b, aba, abb, bba, bbb, aabaa, . . .}

2) The language of strings over {a, b} containing an equal number of a’s and b’s.

3) The language of strings with twice as many a’s as b’s.

4) {aibj | i, j ≥ 0 and i ≥ j}

5) {aibj | i, j ≥ 0 and i 6= j} (Complement of the language {anbn | n ≥ 0})

6) The language of strings over {a, b} containing more a’s than b’s. (e.g. abaab)

7) {w#x | w, x ∈ {0, 1}∗ and wR is a substring of x}

8) {x1#x2# · · ·#xk | k ≥ 1, each xi ∈ {a, b}∗, and for some i and j, xi = xRj }

Give informal descriptions of PDAs for the above languages. (How would you use
the stack?)

(3) Let Σ = {a, b} and let B be the language of strings that contain at least one b in
their second half. In other words, B = {uv | u ∈ Σ∗, v ∈ Σ∗bΣ∗ and |v| ≤ |u|}.

1) Give a PDA that recognizes B.

2) Give a CFG that generates B.

(4) Let
C = {x#y | x, y ∈ {0, 1}∗ and x 6= y}
D = {x#y | x, y ∈ {0, 1}∗ and |x| = |y| but x 6= y}

Show that C and D are both CFLs by producing PDAs or CFGs for them. CFLs are ac-
tually closed
under the
regular oper-
ations (union,
concatenation,
and star) but
this argument
fails to prove
closure under
star. What is
missing?

(5) Give a counter example to show that the following construction fails to prove that
the class of context-free languages (CFLs) is closed under the star operation.

Let A be a CFL that is generated by the CFG G = (V,Σ, R, S).
Add the new rule S → SS and call the resulting grammar G′.
This grammar is supposed to generate A∗.

4

Context-Free Languages (CFLs)
A

d
va

n
c

e
d

Extend your class for simulating NFAs from lab 2 to simulate PDAs.

5

