
Pumping Lemma
Ba

sic

(1) (Minimum pumping length)

The PL says that every RL has an associated pumping length p, such that every string
in the language can be pumped as long as it has at least p symbols.

Note that if p is a pumping length for a language then so is any other length ≥ p.
We define the minimum pumping length to be the smallest such p.

For example, if L = ab∗ = {a, ab, abb, . . .} then its minimum pumping length is 2.
This is because the string w = ab can be pumped by starring the b: ab∗; while the
shorter string w = a cannot be pumped.

For each of the following languages, give the minimum pumping length and justify
your answer.

1) aab∗

2) a∗b∗

3) aab + a∗b∗

4) a∗b+a+b∗ + ba∗

The notation a+ is equivalent to aa∗, i.e. 1 or more a’s (as opposed to a∗ which
means zero or more a’s).

5) (01)∗

6) ε

7) b∗ab∗ab∗

8) 10(11∗0)∗0

9) 1011

10) Σ∗

(2) (PL applied to RLs)

When we try to apply the Pumping Lemma to a Regular Language the Prover wins,
and the Falsifier loses.

Show why Falsifier loses when L is one of the following RLs:

1) (aa)∗

2) (aa + bb)∗

3) 01∗0∗1

4) {00, 11}

5) ∅

Hint: For each language, find a suitable value for p and use it.

1

Pumping Lemma
PL

a
n

d
Re

g
ul

a
r

La
n

g
u

a
g

e
s

The following are almost complete proofs that some languages are not regular,
using the Pumping Lemma (PL). Complete them by filling in the hidden details.
(Some were done in the lecture using less formal notation.)

(3) Show that the language L = {0n1n | n ≥ 0} is not regular.

Ê Prover claims L is regular and fixes
the value of the pumping length p.

Ë Falsifier challenges Prover and picks
w = 0p ∈ L and verifies it has the
required length: |w| = ≥ p.

Ì Prover tries to decompose w into
three parts w = but sees that the
condition |xy| ≤ forces y to only con-
tain the symbol .
Furthermore, y cannot just be the empty
string because of the condition
So it is forced to choose y = 0d for some
d ≥ 1.

Í Falsifier now sees that

xy2z = xy z = 0p 1p = 0p+d1p.

and hence xy2z does not belong to L.
This is because d ≥ 1 =⇒ p + d > p,
and hence xy2z has more ’s than there
are ’s. (They need to be equal for it to
be in the language.)

(Note that we could use any of xy3z, xy4z,
In fact, we could have even used xy0z = xz; we
end up with less 0’s than there are 1’s.)

2

Pumping Lemma
Ba

sic

(4) L = {ww | w ∈ {0, 1}∗}.

Ê Prover claims L is regular and fixes
the value of the pumping length p.

Ë Falsifier challenges Prover and
chooses w = (0p1)(0p1) ∈ L.
This has length

|w| = (p + 1) + () = ≥ p.

Ì Prover The PL now guarantees that
w can be split into three substrings w =
xyz satisfying |xy| ≤ p and y 6= ε.

Í Falsifier Since

w = (0p1)() = xyz

with |xy| ≤ p then we must have that y
only contains the symbol .
We can then pump y and produce
xy2z = xyyz 6∈ L because the first half

the second half.
So L is not regular.

(5) L = {aibjck | 0 ≤ i < j < k}

Ê Prover claims L is regular and fixes
the value of the pumping length p.

Ë Falsifier challenges Prover and
chooses

w = a b
+1
c

+2
.

Here |w| = p + p

Ì Prover writes

w = (xy)z = (ap)bp+1cp+2

where xy is a string of ’s only
Í Falsifier forms

xy2z = a
p+

bp+1cp+2 6∈ L

because |y| ≥ 1.

3

Pumping Lemma
Ba

sic
:

“p
um

p
in

g
d

o
w

n
”

(6) L = {aibj | i > j}

Ê Prover claims L is regular and fixes
the value of the pumping length p.

Ë Falsifier challenges Prover and
chooses

w = a
+1
b

Here |w| = = 2p + 1 p

Ì Prover writes

w = (xy)z = (a)ab

i.e. xy is a string of ’s only
Í Falsifier forms

xy0z = xz = a
p+1−

bp 6∈ L

because |y| ≥ 1. (so p + 1− ≤ p).

(7) L = {aibjck | i > j > k ≥ 0}

Ê Prover claims L is regular and fixes
the value of the pumping length p.

Ë Falsifier challenges Prover and
chooses

w = a bp+1c0.

Here |w| = + (p + 1) + 0 .

Ì Prover writes

w = a a2bp+1c0 = xyz,

where xy can have a maximum of
symbols, so xy must be a string of ’s
only

Í Falsifier forms

xy z = xz = a
−|y|

bp+1c0 6∈ L

because |y| ≥ 1.

4

Pumping Lemma
O

p
tio

n
a

l–
JF

LA
P

Go through the JFLAP tutorial on: https://www.jflap.org/tutorial/pumpinglemma/
regular/ and then try all the “games.”

JFLAP plays the role of Falsifier and you play the role of Prover .

Note that some of the languages below are actually regular – in this case, you will need
to devise a strategy for Prover to always win no matter what Falsifier chooses as a
challenge string.

JFLAP’s notation:
� m is used instead of p (the pumping length).
� i is used instead of k in xykz.
� na(w): the number of occurrence of the symbol a in the string w.

e.g. na(aba) = 2 and nb(aba) = 1.
� wR: the reverse string of w, e.g. abbR = bba.

Assume Σ = {a, b} unless otherwise specified.

The list of languages is as follows:

1. {anbn | n ≥ 0} Hint: apbp

2. {w ∈ Σ∗ | na(w) < nb(w)} Hint: apbp+1

i.e. language of strings which have less a’s than there are b’s.

3. {wwR | w ∈ Σ∗} Hint: apb2pap

4. {(ab)nam | n > m ≥ 0} Hint: (ab)p+1ap

5. {anbmcn+m | n ≥ 0,m ≥ 0}

6. {anb`ak | n > 5, ` > 3, ` ≥ k}

7. {an | n is even} Hint: Regular

8. {anbm | n is odd or m is even} Hint: Regular

9. {bba(ba)nan−1 | n ≥ 1}

10. {b5w | w ∈ Σ∗ and 2na(w) = 3nb(w)}

11. {b5w | w ∈ Σ∗ and na(w) + nb(w) ≡ 0 (mod 3)}

12. {bm(ab)n(ba)n | m ≥ 4, n ≥ 1}

13. {(ab)2n | n ≥ 1} Hint: Regular

Warning: The games played by JFLAP are for a specific challenge string. This is
only meant to give you a feel for how the general game proceeds. When we write
our proofs we are not allowed to choose a fixed value for p.

5

https://www.jflap.org/tutorial/pumpinglemma/regular/
https://www.jflap.org/tutorial/pumpinglemma/regular/

Pumping Lemma
In

te
rm

e
d

ia
te

(1) Let Σ = {0, 1, +, =}, and ADD be the language given by

{u=v+w | u, v, w are binary integers, and u is the sum of v and w in the usual sense}

Show that ADD is not regular.

(2) Let L = {12n | n ≥ 0}. Show that L cannot be regular.

6

Pumping Lemma
In

te
rm

e
d

ia
te

(3) L = {aibjck | j 6= i or j 6= k}

Ê Prover claims L is regular and fixes
the value of the pumping length p.

Ë Falsifier challenges Prover and
chooses

w = apb c

Here |w| = p + 2() ≥ p.

Ì Prover writes

w = (xy)z = (ap)b c

where xy is a string of a’s only
Í Falsifier forms

xykz = ap+(k−1)|y|b c

where k = 1 + / . This gives

ap!+pb c which is not in
the language.

7

