
Lab 3a: Converting NFAs to DFAs
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(1) Consider the following NFA.
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1) What is its transition table?

2) Use the subset construction method to convert it to an equivalent DFA.

3) Draw the state diagram of the resulting DFA.

4) Which of the following sets of NFA states is not a state of the resulting DFA?

� {A, C} � {B, C} � {A} � {B}

(2) Use the subset construction method to convert the following NFA to an equivalent
DFA.

0 1
→ A {A, B} {C}

B {D} {B}
C {C} {E}

* D ∅ {D}
* E ∅ {E}
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Hint: The resulting DFA has 13 states, 8 of which are accepting states.

(3) Design an NFA that accepts strings over {a, b} which end with aaa, then convert it
to an equivalent DFA.

(4) Design an NFA that accepts strings over {0, 1} which have 1 in the second position
from the end (e.g. 0010, 1011,10, etc.), then convert it to an equivalent DFA.
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Lab 3b: Regular Expressions
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(1) Complete the descriptions of the following regular expressions (write in the shaded

boxes). Assume the alphabet Σ = {0, 1} in all the parts.

Recall that, unless brackets are used to explicitly denote precedence, the operators
precendence for the regular operations is: star, concatenation, then union.

1) 01 + 10 = { , }

2) (ε + 0)(ε + 1) = {ε, 0, 1, }

3) (0 + ε)1∗ = 01∗ + 1∗ = {w | w has at most and is at the start of w}

4) Σ∗0 = {w | w ends with a } = {w | w respresents an number in binary}

5) 0∗10∗ = {w | w contains a single }

6) Σ∗0Σ∗ = {w | w has at least one }

7) Σ∗001Σ∗ = {w | w contains the string as a substring}

8) Σ∗000∗Σ∗ = {w | w cotains at least consective ’s}

9) (011∗)∗ = {w | every in w is followed by at least one }

10) ΣΣ + ΣΣΣ = ΣΣ(ε + Σ) = {w | the length of w is exactly or }

11) (ΣΣ)∗ = {w | w is a string of length}

12) (ΣΣΣ)∗ = {w | the length of w is a multiple of }

13) 0Σ∗0 + 1Σ∗1 + 0 + 1 = {w | w starts and ends with the symbol}

(2) Produce a regular expression for the following languages over the alphabet {a, b}

1) The language La of all strings that start with a.

2) The language Lb of all strings that end with b.

3) The union La ∪ Lb.

4) The concatenation LaLb.

5) L = (La ∪ Lb)LaLb.

6) The star closure of L: L∗.

Produce ε-NFAs for each of the above using the constructions shown in the lecture
for the union, concatenation, and star.

(3) For each of the following RegEx’s, give two strings that are members of the cor-
responding language, and two strings that are not. (A total of 4 strings for each
part.)

Assume the alphabet Σ = {a, b} in all the parts.

1) a∗b∗

2) a(ba)∗b

3) a∗ + b∗

4) (aaa)∗

5) Σ∗aΣ∗bΣ∗aΣ∗

6) aba + bab

7) (ε + a)b

8) (a + ba + bb)Σ∗
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Lab 3b: Regular Expressions
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(4) Give regular expressions generating the languages below over Σ = {0, 1}

1) {w | w begins with 1 and ends with a 0}

2) {w | w contains at least three 1’s}

3) {w | w contains the substring 0101}

4) {w | w has length at least 3 and its third symbol is 0}

5) {w | w starts with 0 and has odd length, or starts with 1 and has even length}

6) {w | w does not contain the substring 110}

7) {w | the length of w is at most 5}

8) {w | w is any string except 11 and 111}

9) {w | every odd position of w is 1}

10) {w | w contains at least two 0’s and at most one 1}

11) {ε, 0}

12) {w | w contains an even number of 0’s, or contains exactly two 1’s}

13) The empty set.

14) All strings except the empty string.
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Lab 3c: NFA to GNFA to RegEx
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Reminder: We can convert any NFA into a GNFA as follows:

� Add a new start state with an ε-transition to the NFA’s start state.
� Add a new accept state with ε-transitions from the NFA’s accept states.
� If a transition has multiple labels then replace them with their union. (e.g. a, b →
a + b.)

Once the GNFA is produced, start removing states, one at a time, and “patch” any af-
fected transitions using regular expressions (RegEx’s). Repeat until only two states (ini-
tial and accept) remain. The RegEx on the only remaining transition is the equivalent
RegEx to the NFA.

(1) Use the GNFA algorithm to find regular expressions for the languages recognized
by the following NFAs.

Can you interpret the results?

a

b

a,b

a,b

a b

a b

a,b
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Lab 3c: NFA to GNFA to RegEx
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(2) Give RegEx’s for the languages recognized by the following similar NFAs, using
the GNFA algorithm. What do you notice?

0

1 0

1

ε

0

1 0

1

ε

0

1 0

1

ε

(3) Let Ln be the language of all strings over Σ = {1} that have length a multiple of n,
where n is a natural number (i.e. n ∈ N = {1, 2, 3, . . .}).

1) Design an NFA to recognize L3, and another to recognize L5.

2) Write down RegEx’s for L3 and L5, then for their union L3 ∪ L5.

3) Construct the ε-NFA that recognizes L3 ∪ L5.

4) Use the GNFA algorithm to obtain a RegEx for L3 ∪ L5.
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(1) Let Bn = {am | m is a multiple of n} = {akn | k ∈ Z≥0} over the alphabet Σ = {a}.

Show that the language Bn is regular for any n ∈ N by writing a regular expression
for it.

Outline the description of an NFA that can recognize it.

(2) (Closure of regular languages under reversal of strings)

For any string s = s1s2 . . . sn, where si are symbols from the alphabet, the reverse
of s is the string s written in reverse order: sR = snsn−1 . . . s1.

Given an NFA or RegEx that recognizes a language A, describe how you can trans-
form this NFA/RegEx to recognize the language AR = {wR | w ∈ A}, i.e. the
language that contains all the strings from A but in the reverse order.

Hint: Test your ideas on the languages given by the RegEx’s: (Σ = {a, b})

a, b, aa, ab, aa + bb, ab + bb, a∗b∗, Σ∗a, aΣ∗, ab∗a∗b, (ab)∗, (aa + bb)∗, (ab + bb)∗.

(3) Convert the following ε-NFA to an equivalent DFA.

1

2 3

b ε

a

a, b

a

(4) Show that

1) 1∗∅ = ∅
(Concatenating the empty RegEx ∅ to any RegEx yields the empty RegEx again)

2) ∅∗ = {ε}

You may find it helpful to construct the corresponding ε-NFAs.

(5) Let Σ = {0, 1} and let

D = {w | w contains an equal number of the occurrances of the substrings 01 and 10}.

As an example, 101 ∈ D but 1010 6∈ D.
Show that D is a regular language (by producing an NFA for it, or otherwise).

Does this hold for {w | w contains an equal number of 0’s and 1’s} ?
Can you see why? What is the difference!?
How about the language {w | w contains a non-equal number of 0’s and 1’s} ?
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Intermediate exercises
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(1) (Regular Expressions in practice)

Suppose we have a programming language where comments are delimited by @=

and =@. Let L be the language of all valid delimited comment strings, i.e. a member
of L must begin with @= and end with =@.

Use the page at https://regex101.com/r/Ez1kqp/3 and try the following RegEx
searches:

Programming 380CT notation Interpreation

@ @ Just the symbol @

@= @= Just the string @=

. Σ Any symbol from the alphabet

.* Σ∗ Any string over the alphabet

@.* @Σ∗

@.*|.*@ @Σ∗ + Σ∗@

@.*@ @Σ∗@

@=.*=@ @=Σ∗=@

Interpret the results for the last 4 searches. Try alternative searches to develop your
understanding of how RegEx is used in practice. What is the correct RegEx for L?

N.B. Please note that the regular expressions used in programming languages are
more general than RegEx’s defined for Regular Languages.
See for example https://en.wikipedia.org/wiki/RE2_(software)

(2) Extend your class for simulating DFAs and NFAs from the last lab to convert a
given NFA into an equivalent DFA or to a RegEx.
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