Secrets and Spies

Dan Goldsmith James Shuttleworth

Introduction

About Us

- Dr. Daniel Goldsmith
 - Senior Lecturer: Ethical Hacking and Cyber Security
- Dr. James Shuttleworth
 - Principle Lecturer, Lead of Coventry IoC

Ethical Hacking

- Study of Cyber Security
- Lots of interesting technical challenges to solve
- Look for flaws in systems and propose fixes
- Adversarial Mindset

The loC

- UK Wide initiative to increase Technology skills
- 33 UK universities involved
- Coventry University Leads focus on Industry
- https://instituteofcoding.org/

Cryptography

Cryptography

- Protecting Information and Data through the use of Codes and Ciphers
- If a message is intercepted, getting the meaning is difficult

JUJUP OVERL BODEN VENDO OPTER EXTUP PARGE CINO NAKE JAMIL
CPEC KAIAY XOZUR KTYOP HEROK IMASAJ LOHIR BUJER PAMPE D K

GEOO GOOD = 150 150 = VLJ VIG = PYCHN 1281H EPUR PAMPE D K

JAHUR NETZO VIETEP HETYE WEDDE CHEKO XHURE COKKI NAKIH HEREL IAVUD
VYTES HEMUSI XHAGO TEDBU JITES IYYEJ XIYHL VHRAY EVIKH SARHH K

GEOO GOOD = 122 122 = = EARAR EIERO (NOTES BETOL YAVAR
USAN WEDER YING EIERO HEOVY 231EO YUJID ZFUUU GURBU VINTO IXIO
USAN WEDER YING EIERO HEOVY ANDRE TERER EIE K

Codes and Ciphers

- Codes: Provide a mapping between words or phrases and other symbols
- Cipher Used to transform one symbol into another

Cryptographers VS Cryptanalyst

Cryptographers: RSA

 ${\it Cryptanalyst: Dilly Knox}$

Early Crypto

The Ancient World

- Shaving the Head of Slaves
- Scytale
- Atbash

How many bowls of cereal did Caesar have for breakfast?

Cipherdisc

Caesar Cipher

Caesar Shift

Plaintext Veni Vidi Vici
Ciphertext YHQL YLGL YLFL

Al-Kindi and the first Cryptanalysts

- First description of Frequency analysis published around 800AD
- Look at frequency of Letters in ciphertext
- Use these for Clues to the plaintext

Simple Cryptanalysis Demo

GUR FXL NOBIR GUR CBEG JNF GUR PBYBE BS GRYRIVFVBA GHARQ GB N QRNQ PUNAARY

- What patterns can we see:
 - R and G Most common Letters (E and T)
 - 3 * GUR
 - 1 * N
 - BS and BG

Simple Cryptanalysis

- Most common 3 letter words
 - the, and, for, are, but

THE fxl nobiE THE cbeT jnf THE pbybe bs TEyEivfvba ThaEq Tb n qEnq pHnaaEy

Simple Cryptanalysis

the sky above the port was the color of television tuned to a dead channel

'the indecipherable cipher'

- "Viginere" Cipher
- Multiple alphabets used for substitution
- Frequency Analysis much harder, as the basis shifts

Viginere Example

- We first select a key used to encipher the message. For example "TURING"
- Use the Letter in the Key, to select the alphabet to use

Message	SUPER SECRET MESSAGE
Key	TURIN GTURIN GTURING

Viginere Example

_						
	Т	U	R	1	Ν	G
Α	Т	U	R	İ	Ν	G
В	U	V	S	J	0	Н
С	V	W	Т	K	Р	1
D	W	Х	U	L	P Q	J
Е	Х	Υ	٧	М	R	Κ
F	Υ	Z	W	Ν	S	L
G	Z	Α	Х	0	Т	М
Н	Α	В	Υ	Р	U	Ν
Τ	В	С	Z	Q	٧	0
J	С	D	Α	R	W	Ρ
Κ	D	Ε	В	S	Χ	Q
L	Ε	F	С	S T	Υ	R
М	F	G	D	U	Z	S
Ν	G	Н	Ε	٧	Α	T U
0	Н	1	F	W	В	U
P Q	Ī	J	G	Χ	С	٧
Q	J	Κ	Н	Υ	D	W
R	Κ	L	1	Z	Ε	Х
S T	L	М	J	Α	F	Υ
Т	М	Ν	Κ	В	G	Z
U	N	0	L	С	Н	Α
V	0	Р	М	D	1	В
W	Р	0	N	E F	J	C D
Χ	P Q	R	0	F	K	D
V	D	c	D	C	1	_

Message SUPER SECRET MESSAGE
Key TURIN GTURIN GTURING
Ciphertext LOGME YXWIMG SXMJITK

Analysis of Viginere

- Relies on the cyclic nature of the Key
- Look for repeated groupings of letters in the ciphertext to guess key length
- Frequency analysis on the groups of letters to guess likely keys

The 20th Century and World Wars

Communications become more important (and easier to intercept)

- Invention of modern electronic communication, increased the need for security:
 - Telegraph
 - Radio
- Cryptography also became Mechanised

Enigma

Enigma Machine

Enigma

Enigma Encoding

Breaking Enigma

- How to break 158,962,555,217,826,360,000 possible settings?
- Luck, Poor operating practice, Espionage, and a tonne of hard work.
 - Rejewski and the Polish Cipher Bureau
 - Alan Turing and Bletchly park
- Cribs to guess part of the plain text and get a handle on the encoding.

The Bombe

Bombe

Tunny

Lorenz Teleprinter

Colossus

Colossus

Modern Cryptography and How it

Effects your Life

Crypto becomes Maths

- Following 1945 Crypanalysts were winning.
- Ciphers based on symmetric keys were difficult but not hard to break
- Things changed in the 70's

Hashing

- We use a one way function to turn input into a hash
- Small changes to the input can mean large changes to the hashed value
 - MD5, SHA, CRC-32

Hashing

Using Hashes

- Storing Passwords.
 - To avoid pre-calculating the hash, we can add a salt
- Confirming Integrity of files
 - The MD5 Sum of this presentation is

Public Key Encryption

- We base our encryption method on:
- Public Key which can be used to encrypt a message to a recipient
 - Private Key which is the ONLY way to decrypt a message encoded by the Public key

PKI: RSA

- First "Public" implementation of PKI was RSA encryption
 - Uses Large Prime numbers as components of the Key
 - "One way" mathematical function for deriving public and private keys
- Even if we know the public part, we need to know the two numbers used to generate it.
 - 33 == 11 × 3
 - 259854853 == *X*? × *Y*?

Breaking RSA

- Depends on the Key length.
 - Exponential curve based on key length.
 - For every Bit added we double the length of time
- Its not Impossible to break, but computationally infeasible

Public Key Infrastructure

- How do we the public key we use to encrypt?
 - I want to send James a secret message, how do I know it's HIS key?
- Certificate Authorities (CA) give us some way of trusting this information
 - We can then check the public key against the CA to confirm identity.

Encrypted Web Pages (HTTPS/SSL)

- Encrypting the communication between our web browser and the server
 - Online shopping / banking needs to make use of this
 - Any data sent to and from the server is encrypted

Encrypted Web Pages

- An encrypted website has a public key and certificate.
- Public key is used to encrypt data
- Additionally, the certificate is checked. If it is suspicious we get a warning.
- Shpould we get a warning or should it be automatically blocked?
 - Why may a certificate be incorrect.
 - Time Expired etc. Self signed

Encrypted Web Pages: Downsides

- HTTPS is a Really Good Thing (TM). It should be there by default
- But If I can setup a certificate easily, so can the bad guys.
 - about 2/3 of Phishing sites are SSL.
- The Data is secure, and the server it is going to is the one registed
- However, is the site itself legitimate. Can the public CA's check this?

End-to-End Encryption

- Web based communication is still Client Server
 - The Middle man could still read our messages
- Messages are encrypted with each person in the conversations
 Public Key.
 - Application is responsible for forwarding content, and managing key exchange

Evil Encryption:

- Unfortunately Encryption isn't all for good.
 - Recent(ish) attacks encrypt a victims files
 - Pay a ransom to get the files decrypted
 - Almost impossible to restore the data without the private key
- All based on the Public Key encryption
- Bad guys encrypt the data on your system using their public key.
- Only the private key can get it back
- Some AV companies are publishing details of Private keys as they become known.

Thank You

Please get in touch if you would like to comment, learn more about our courses, or get involved with the Institute Of Coding Coventry University.

- Deepak Farmah: E. DFarmah@cueltd.co.uk | T. 07392 096215
- Louise Phipps: E. LPhipps@cueltd@cueltd.co.uk | T. 07392 096318

Please complete the post webinar survey:

https://tinyurl.com/IoC-Webinars-May