Soventry 5062CEM Programming and Algorithms 2

NIvVersl Conditional and Control Statements in C++

Conditional and Control Statements in C++
Dr Ian Cornelius

Soventry 5062CEM Programming and Algorithms 2

NIvVersl Conditional and Control Statements in C++

Hello

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

Hello (1)

Learning Outcomes

1. Understand how to use conditional and control statements in C++
2. Demonstrate the ability to use conditional and control statements in C++

Soventry 5062CEM Programming and Algorithms 2

NIvVersl Conditional and Control Statements in C++

Conditional Statements

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

Conditional Statements (1)

* Recap:
o A basic form of making a decision using a selection structure

= the result will return either 1 (true) or o (false)

e C++ allows the following types of conditional statements:

O

O

O

O

if

if ... else ...

if ... else 1if
nested if ... else ...

e These statements are structured slightly different compared to Python

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

if Statements

Soventry 5062CEM Programming and Algorithms 2

NIvVersl Conditional and Control Statements in C++

if Statements (1)

e Often referred to as a decision-making statement
» Used to control the flow of execution for statements and to test - 'vartabte == value

an expression
o tests logically whether a condition is true or false

e Note: Unlike Python the comparison expression is wrapped in

brackets (())
o there are also curly brackets ({}) which enclose the return

statement

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

if Statements (2)
Example: if Statement i

e Declare avariable ifExamplel to store the integer value 1

e Perform a comparison check: isexamplel equal to 1? #include <iostream>
int ifExamplel = 1;

o if true: printthe value True, ifeExamplel is 1to the , ,
int main() {

screen if (ifExamplel == 1) {
std: :cout << "True, ifExamplel is 1" << std::endl;
}
return 0;
}

True, ifExamplel is 1

vent 5062CEM Programming and Algorithms 2 C
niversi Conditional and Control Statements in C++

if Statements (3)

Example: if Statement ii

e Declare avariable ifExample1l to store the integer value 2
e Perform a comparison check: ifExamplel equal to 1? #include <iostream>

. . int ifE 1= 2;
o if True: print the value True to the screen tnt ifExanple :
int main() {
i1f (ifExamplel == 1) {

std: :cout << "True, ifExamplel is 1" << std::endl;

o otherwise, continue executing the code

}
std: :cout << "Outside the 'if' statement." << std::endl;
return 0;

Outside the 'if' statement.

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

if else Statements

Soventry 5062CEM Programming and Algorithms 2

NIvVersl Conditional and Control Statements in C++

if else Statements (1)

e Known as an alternative execution, whereby there are two

possibilities if (variable == value) {
o the condition statement determines which of the two) lee {
statements gets executed
e The else is used as the ultimate result for a test expression }

o this result is only met if all other statements are false

vent 5062CEM Programming and Algorithms 2

niversl Conditional and Control Statements in C++

if else Statements (2)
Example: if else Statement |

e Declare avariable ifExamplel to store the integer value 1
e Perform a comparison check: ifExamplel equal to 1?

o if True: print the value True, ifExamplel is 1 to the
screen
o otherwise, print False, ifExamplel is not 1

#include <iostream>
int ifExamplel = 1;
int main() {
i1f (ifExamplel == 1) {
std: :cout << "True, ifExamplel is 1" << std::endl;
} else {

std: :cout << "False, ifExamplel is not 1" << std::endl;
}

return 0;

True, ifExamplel is 1

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

if else Statements (3)
Example: if else Statement ii

e Declare avariable ifExample1l to store the integer value 2
e Perform a comparison check: ifExamplel equal to 1?
o if True: print the value True, ifExamplel is 1 to the
screen
o otherwise, print False, ifExamplel is not 1

#include <iostream>
int ifExamplel = 2;
int main() {
i1f (ifExamplel == 1) {
std: :cout << "True, ifExamplel is 1" << std::endl;
} else {

std: :cout << "False, ifExamplel is not 1" << std::endl;

}

return 0;

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

else if Statements

vent 5062CEM Programming and Algorithms 2 C
niversi Conditional and Control Statements in C++

else if Statements (1)

e Evaluates two or more possibilities from a collection of
comparison statements

e The condition allows for two or more possibilities, known as a) else if (varisble < value)
chained conditional

i1f (variable > value) {

} else {

vent 5062CEM Programming and Algorithms 2

niversi Conditional and Control Statements in C++ ¢
else if Statements (2)
Example: else if Statement i
e Declare avariable ifExamplel to store the integer value 1
e Declare a variable ifExample2 to store the integer value 3 #include <ilostream-
e Perform a comparison check: ifExamplel equal to 1? tnt ifExamplel = 1;
. . int ifExample2 = 3;
o if True: print the value [True] ifExamplel is 1to the e e
screen if (ifExamplel == 1) {
PY Stop the comparison checks! std: :cout << ”[True] ifExamplel 1s 1" << std: :end-l.;
} else i1f (ifExample2 == 2) {
std::cout << "[True] ifExample2 is 2" << std::endl;
} else {
std: :cout << "[False] ifExamplel is not 1, and ifExample2 1is
}
return 0:

[True] ifExamplel is 1

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

else if Statements (3)
Example: else if Statement i

e Declare avariable ifExample1 to store the integer value 3
e Declare a variable ifExample2 to store the integer value 2
e Perform a comparison check: ifExamplel equal to 1?
o if True: print the value [True] ifExamplel is 1to the
screen
o otherwise, perform another conditional check: ifExample2
Is equal to 27

= if True: printthe value [True] ifExample2 is 2to

the screen
e Stop the comparison checks!

#include <ilostream>
int ifExamplel = 3;
int ifExample2 = 2;
int main() {
i1f (ifExamplel == 1) {
std: :cout << "[True] ifExamplel is 1" << std::endl;
} else i1f (ifExample2 == 2) {
std::cout << "[True] ifExample2 is 2" << std::endl;
} else {

std: :cout << "[False] ifExamplel is not 1, and ifExample2 1is

}

return 0:

[True] ifExample2 is 2

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

else if Statements (4)
Example: else if Statement iii

e Declare avariable ifExamplel to store the integer value 1
e Declare a variable ifExample2 to store the integer value 3
e Perform a comparison check: ifExamplel equal to 1?
o if True: print the value [True] ifExamplel is 1to the
screen
o otherwise, perform another conditional check: ifExample2
Is equal to 27

= if True: printthe value [True] ifExample2 is 2to

the screen
m otherwise, print [False], ifExamplel is not 1,

and 1fExample2 1s not 2

#include <ilostream>
int ifExamplel = 1;
int ifExample2 = 3;
int main() {
if (ifExamplel == 1) {
std: :cout << "[True] ifExamplel is 1" << std::endl;
} else i1f (ifExample2 == 2) {
std::cout << "[True] ifExample2 is 2" << std::endl;
} else {

std: :cout << "[False] ifExamplel is not 1, and ifExample2 1is

}

return 0:

[True] ifExamplel is 1

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

Nested if Statements

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

Nested if Statements (1)

e if statements can be written inside each other
if (variable == value) {

o this is known as nesting if (variablel == valuel) {
} éi;e if (variablel == value2) {
} else |
: .

} else {

i1f (variable2 == valuel) {

} else {

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

Nested if Statements (2)
Example: Nested if Statement i

e Declare avariable ifExamplel to store the integer value 1

e Declare a variable ifExample2 to store the integer value 2 #include <ilostream-
int ifExamplel = 1;

e Perform a comparison check: ifExamplel equal to 1? .
int ifExample2 = 2;

o if True: perform another comparison check: ifExample2 int main() {

equal to 2? if (ifExamplel == 1) {
1f (ifExample2 == 2) {

m if True: print [True] ifExamplel is 1 and
P [] P std::cout << "[True], ifExamplel is 1, and ifExample2 is 2

ifExample2 1is 2 } else if (ifExample2 == 4) {
} else {
std::cout << "[True] i1fExamplel is 1 but, ifExample2 is no
1

[True], ifExamplel is 1, and ifExample2 is 2

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

Nested if Statements (3)
Example: Nested if Statement ii

e Declare avariable ifExamplel to store the integer value 1

e Declare a variable ifExample2 to store the integer value 4 #include <ilostream-
int ifExamplel = 1;
int ifExample2 = 4;
int main() {
equal to 2? if (ifExamplel == 1) {
1f (ifExample2 == 2) {
std::cout << "[True], ifExamplel is 1, and ifExample2 is 2

e Perform a comparison check: ifExamplel equal to 1?

o if True: perform another comparison check: ifExample2

m if True: print [True] ifExamplel is 1 and

ifExample2 1is 2 } else i1f (ifExample2 == 4) {
= otherwise perform another comparison check: : Z_tt‘i’e’?”t << 'lTrue] ifExamplel s 1 and ifExample2 s 47 ;
1fExample2 equal to 47 std::cout << "[True] i1fExamplel is 1 but, ifExample2 is no
m if True: print [True] ifExamplel is 1 and !
i.':Examp-Lez is 4 [True] ifExamplel is 1 and ifExample2 is 4

e Stop the comparison checks!

vent 5062CEM Programming and Algorithms 2 C
niversi Conditional and Control Statements in C++

Nested if Statements (4)
Example: Nested if Statement iii

e Declare avariable ifExample1l to store the integer value 2

e Declare a variable ifExample2 to store the integer value 5 #include <ilostream-
int ifExamplel = 2;
int ifExample2 = 5;
int main() {
equal to 2? if (ifExamplel == 1) {
1f (ifExample2 == 2) {
std::cout << "[True], ifExamplel is 1, and ifExample2 is 2
} else i1f (ifExample2 == 4) {
std::cout << "[True] ifExamplel is 1 and ifExample2 is 4" -
} else {

std::cout << "[True] i1fExamplel is 1 but, ifExample2 is no
!

e Perform a comparison check: ifExamplel equal to 2?

o if True: perform another comparison check: ifExample2

o otherwise, print [False] ifExamplel is not 1
e Stop the comparison checks!

[False] ifExamplel is not 1

Soventry 5062CEM Programming and Algorithms 2

NIvVersl Conditional and Control Statements in C++

Control Statements

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

Control Statements (1)

o Typically, statements in code will be executed sequentially
e There are some situations that require a block of code to be repeated

o i.e. summing numbers, capturing multiple user-input etc.
e Control statements, otherwise known as loop statements, are required
e Three types of loops in C++:

o while
O do ... while ...

o for

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

while Loops

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

while Loops (1)

* Aloop that executes zero or more times before it is terminated
e Used to evaluate upon a condition

o if the condition evaluates to 1 (true) the code inside the loop will be executed
o if the condition evaluates to o (false) the loop will terminate

while (variable < value) {

variable += 1;

}

vent 5062CEM Programming and Algorithms 2

niversi Conditional and Control Statements in C++ ¢
while Loops (2)
e Initiate a new variable: whileExamplel = 0
e Provide a condition to evaluate on: whileExamplel <= 5 #include <iostream>
evaluates to 1 (true) tnt whileExamplel = O:
o . int main() {
o execute the code inside the while loop: while (whileExamplel <= 5) {
0 prints the value of whileExamplel std: :cout << "whileExamplel -> " << whileExamplel << std: :endl
: . hileE lel += 1;
= increments whileExamplel by 1 } WL EEERATREE
e Loop is repeated until condition evaluates to o (false) return 0:

whileExamplel ->
whileExamplel ->
whileExamplel ->
whileExamplel ->

whileExamplel ->

oo »h W N B O

whileExamplel ->

vent 5062CEM Programming and Algorithms 2 C
niversi Conditional and Control Statements in C++

while Loops (3)
Breaking a while Loop

e break statements can be used to stop the loop if a condition is

evaluated to true #include <iostream>
int whileExamplel = 0;
int main() {
while (whileExamplel <= 5) {

e Initiate a new variable: whileExamplel = 0

e Provide a condition to evaluate on: whileExamplel <= 5

evaluates to 1 (true) std: :cout << "whileExamplel -> " << whileExamplel << std: :endl
o execute the code inside the while loop: Lf (whileExamplel == 2) {
: _ break;
= prints the value of whileExamplel)
= increments whileExamplel by 1 whileExamplel += 1;
e Loop is repeated until the conditional statement in the loop }
return 0;

evaluates to 1 (true) .

o in this instance, when whileExamplel is 2
whileExamplel -> 0

whileExamplel -> 1
whileExamplel -> 2

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

while Loops (4)
Skipping an Iteration

e continue statements can stop the current iteration and continue

onto the next
e Initiate a new variable: whileExamplel = 0

e Provide a condition to evaluate on: whileExamplel <= 5
evaluates to 1 (true)
o execute the code inside the while loop:
= prints the value of whileExamplel

= increments whileExample by 1

e Loop is repeated until the conditional statement in the loop
evaluates to 1 (true)

o in this instance, when whileExamplel is 2

#include <iostream>
int whileExamplel = 0;
int main() {
while (whileExamplel <= 5) {
whileExamplel += 1;
1f (whileExamplel == 2) {
std: :cout << "SKIPPED" << std
continue;

}

std: :cout << "whileExamplel ->

}

return :

whileExamplel -> 1
SKIPPED

whileExamplel ->
whileExamplel ->
whileExamplel ->

o U1 A~ W

whileExamplel ->

s cendl;

<< whileExamplel << std: :endl

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

while Loops (5)
Infinite while Loops

e Infinite loops can be constructed by using a true value after the
while keyword
o in this case with C++ -1

e Will continue incrementing whileExamplel until it reaches a
certain value
o in this instance whileExamplel must be equal to 5

e If there is no condition to check in the loop, it will continue
Incrementing

#include <ilostream>
int whileExamplel = 0;
int main() {

while(1) {

std: :cout << "whileExamplel -> "

whileExamplel += 1;
1f (whileExamplel == 5) {

break;

¥
}

return 0;
\

whileExamplel ->
whileExamplel ->
whileExamplel ->

whileExamplel ->

A W N R O

whileExamplel ->

<< whileExamplel << std: :endl

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

do ... while Loops

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

do ... while Loops (1)

e Avariant of the while loop structure

d
e One important difference: 2

o the execution ofado ... while is performed before the }

conditional check is evaluated while (condition);

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

do ... while Loops (2)

e Initiate a new variable: dowhileExamplel = 0

e Execute the code inside the do statement: #include <iostream>
int doWhileExamplel = 0;

o prints the value of dowhileExamplel . .
int main() {

o increments dowhileExamplel by 1 do {
e dowhileExamplel <= 5 evaluates to 1 (true) std: :cout << "doWhileExamplel -> " << doWhileExamplel << std::
e Loop is repeated until condition evaluates to o (false) : doWhileExamplel += 1;
while (doWhileExamplel <= 5);
return 0;

doWhileExamplel ->
doWhileExamplel ->
doWhileExamplel ->
doWhileExamplel ->
doWhileExamplel ->
doWhileExamplel ->

oo h W N PR O

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

for Loops

Soventry 5062CEM Programming and Algorithms 2

NIvVersl Conditional and Control Statements in C++

for Loops (1)

e Aloop thatis designed to increment a counter over a given range of values
e They are best suited for problems that need to iterate a specific number of times

o i.e. looping through a directory or set of files
e Considered to be a pre-test loop

o they check their condition before execution
e for loops are useful because...

o they know the number of times a loop should be iterated
o they use a counter
o require a false condition to terminate the loop

for (initialisation; condition; update

e initialisation: initialises the counter-variable

o j.e.int 1 = 0;
e condition:if 1 (true) the body of the loop is executed, if o (false) the loop is terminated
* update:increments the counter-variable and checks the condition again

o |.e. i++

vent 5062CEM Programming and Algorithms 2 C
niversi Conditional and Control Statements in C++

for Loops (2)

Example: Iterating Forwards

e Initialise our counter, int i = 0;
e Provide a conditional check: #include <iostream>

o i.e.i < 5-checks whether the integer is less than 5 int main() {
for (int 1 =0; 1 < 5; 1++) {

If the condition is 1 (true) then execute the code within the for B . B ,
std::cout << "1 -> << 1 << std::endl;

body }
o in this instance, it will print the value of i }

e Increment the counter by one, i++

Loop until the conditional check evaluates to o (false)

e e e =
Y
A W N R O

vent 5062CEM Programming and Algorithms 2 C
niversi Conditional and Control Statements in C++

for Loops (3)

Example: Iterating Backwards

e Initialise our counter, int i = 5;
e Provide a conditional check: #include <iostream>

o i.e.i > 0- checks whether the integer is less than 5 int main() {
for (int 1 =5; 1{>0; 1--) {

std::cout << "1 -> << 1 << std::endl;

If the condition is 1 (true) then execute the code within the for
body }
o in this instance, it will print the value of i }

e Increment the counter by one, i--

Loop until the conditional check evaluates to o (false)

e e e =
Y
) N W D U

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

for Loops (4)

Range-Based Loops

e Range-based loops can be used to work on arrays and vectors
e The syntax of a range-based loop:

for (variable : |[array or vector|) {

}

e For each element in the array or vector, the loop is executed
o the element will be assigned to the variable

vent 5062CEM Programming and Algorithms 2 C
niversi Conditional and Control Statements in C++

for Loops (5)

Example: Range-Based Loops i

e Create the variable to store an element from the array

o |.e.int i #include <iostream>
int intArrayExamplel|5]| = {0, 1, 2, 3, 4};

o | _ . int main() {
o it will then be printed to the terminal window for (int 1 : intArrayExamplel) |

e Loop will terminate when no more elements exist in the array std::cout << "i -> " << 1 << std: :endl:

e Each element inside the array will be assigned to i

e e i i
Vv
A W N R O

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

for Loops (6)

Example: Range-Based Loops ii

e Create the variable to store an element from the array

o |.e.auto item #include <iostream>

e Each element inside the map will be assigned to item #include <map>

std: :map<int, std::string> mapExamplel = {{0, "Ian Cornelius"}, {:

o the key and value of each element can be accessed by: e R

" first:returns the key for (auto &item : mapExamplel) {
®m second: returns the value std::cout << "item.first -> " << item.first << std::endl;
. . _ std: :cout << "item.second -> " << item.second << std: :endl
o they then be printed to the terminal window)
e Loop will terminate when no more elements exist in the map }

item.first -> 0
item.second -> Ian Cornelius
item.first -> 1
item.second -> Terry Richards
item.first -> 2

item.second -> Daniel Goldsmith

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

for Loops (7)

Infinite Loops

e Infinite loops can also be created using a for
e A condition is required that will always evaluate to 1 (otherwise known as true)

for(int 1 = 1; 1 > 0; i1++) {
}

e In this instance, the integer i will always be greater than o
e Some method of terminating will be required
o i.e. checking whether i is a particular value

Soventry 5062CEM Programming and Algorithms 2

NIvVersl Conditional and Control Statements in C++

Goodbye

vent 5062CEM Programming and Algorithms 2
niversi Conditional and Control Statements in C++

Goodbye (1)
Questions and Support

e Questions? Post them on the Community Page on Aula
e Additional Support? Visit the Module Support Page
e Contact Details:

o DrIan Cornelius, ab6459@coventry.ac.uk

https://github.coventry.ac.uk/pages/CUEH/5062CEM/module/support/
mailto:ab6459@coventry.ac.uk

