
 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

REST Interfaces and Flask
Dr Ian Cornelius

1

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

Hello

2 . 1

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

Hello (1)
Learning Outcomes
1. Understand the concept of Representational State Transfer (REST) and the Flask module
2. Demonstrate your knowledge of REST interfaces in a body of work
3. Demonstrate your knowledge of Flask in a body of work

2 . 2

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

RESTful Interfaces

3 . 1

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

RESTful Interfaces (1)
Abbreviation for: Representational State Transfer

also commonly referred to as a RESTful API
An architectural style for providing standards between computer systems and the web
Characterised by being stateless
Concerned with the separation of client and server

both the client and server can be developed independently
changes on either platform will not affect each other

REST works with resources and not commands
a resource is an object or document
no reliance upon interfaces

3 . 2

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

RESTful Interfaces (2)
Communicating between a Client and a Server i

Client sends a request to receive or modify a resource
Server responds to the request made by a client
A client’s request is made up of the following:

a HTTP verb
a header and accept parameter
path to the resource
an optional message body

3 . 3

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

RESTful Interfaces (3)
Communicating between a Client and a Server ii
HTTP Verbs

Four basic HTTP verbs:
1. GET
2. POST
3. PUT
4. DELETE

Headers and Accept Parameters
Sends information about the content to be received from the server
Stipulated inside the Accept field of the header
Defined by a MIME Type:

application: application/json, application/pdf, application/xml
audio: audio/mpeg, audio/wav
image: image/png, image/jpeg, image/gif
text: text/plain, text/html
video: video/ogg, video/mp4

3 . 4

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

RESTful Interfaces (4)
Communicating between a Client and a Server iii
Paths

Requests must contain a path to the resource
Paths should be designed to ensure the client knows what is happening

e.g. /modules/5062/
Paths should always contain necessary information to locate the resource

a degree of specificity if required
POST request to /modules may not need an identifier

the id is generated on the server-side

3 . 5

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

RESTful Interfaces (5)
Sending Responses from the Server

Server responses must also include a MIME type
stored in the content-type of the header

Response data must match what is stored in the Accept field of the client’s request header
Status codes are sent as part of the response

indicates the success of an operation
popular status codes are shown in the table below

Status Code Definition

200 (OK) Successful operation
201 (CREATED) Successful creation of an item
204 (NO CONTENT) Successful operation but no data returned
400 (BAD REQUEST) Failed operation as bad request was sent
403 (FORBIDDEN) Failed operation as the client does not have permission
404 (NOT FOUND) Failed operation as the resource was not found
500 (INTERNAL SERVER ERROR) Failed operation as an unexpected error occurred

3 . 6

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

RESTful Interfaces (6)
REST End-Points

REST APIs expose a set of public URLs to access resources of a web service
these are known as an endpoint

Examples of REST endpoints:

HTTP Verb API Endpoint Description

GET /modules Get a list of modules
GET /modules/ Get a single module
POST /modules Creates a new module
PUT /modules/ Updates a module
DELETE /modules/ Deletes a module

3 . 7

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

Flask

4 . 1

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

Flask (1)
Flask is a third-party module that enables you to build web applications
Based upon the WSGI toolkit and Jinja2 template engine
Often referred to as a micro-framework

makes use of extensions to add extended functionality
e.g. database handling and management, form validation etc.

4 . 2

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

Flask (2)
Flask Extensions

Extensions can provide additional functionality
i.e. database handling, form validation and session management

Common extensions are:
Mail
SQLAlchemy
WTF

Installation of an extension is handled via the Python package manager

$ python3 $ python3 -m-m pip pip installinstall Flask-Mail Flask-SQLAlchemy Flask-WTF Flask-Mail Flask-SQLAlchemy Flask-WTF

4 . 3

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

Flask (3)
Flask and Python

Install Flask via the Python package manager
Note: You should be using virtual environments when working on your Python projects

$ python3 $ python3 -m-m pip pip installinstall Flask Flask

Flask can be imported into the module using the from and import keywords
i.e. from flask import Flask

4 . 4

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

Flask (4)
Creating a Flask Application

A Flask application is created using the Flask class
i.e. app = Flask(__name__)

Create a function for a simple web-page
i.e. def hello()

Use a decorator on the function to denote the path/URL of the
page

i.e. @app.route('/')
Run the application on a local development server

i.e. app.run()
contains four optional parameters: host, port, debug, and
options

fromfrom flask flask importimport Flask Flask

app app == Flask Flask((__name____name__))

@app@app..routeroute(('/''/'))

defdef indexindex(())::

returnreturn "Hello 5062CEM""Hello 5062CEM"

ifif __name__ __name__ ==== '__main__''__main__'::

 app app..runrun(())

4 . 5

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

Flask (5)
Creating a Flask Application with a Template

Flask uses Jinja2 for templating
a directory called templates will store your Jinja templates

Create a file named index.html with the HTML source of your template
this should be located in the templates directory

Jinja uses two curly braces ({{ and }}) to dynamically import data from the backend
between these curly braces will be a variable name

i.e. {{ module }}
this will have been defined as a parameter in the render_template function in the Python source-code

Python Flask Application
fromfrom flask flask importimport Flask Flask,, render_template render_template

app app == Flask Flask((__name____name__))

@app@app..routeroute(('/''/'))

defdef indexindex(())::

returnreturn render_template render_template(("index.html""index.html",, module module=="5062CEM""5062CEM"))

ifif __name__ __name__ ==== '__main__''__main__'::

 app app..runrun(())

HTML Template

<<htmlhtml>>

<<headhead>>

<<titletitle>>{{ module }}{{ module }}</</titletitle>>

<<stylestyle>>

 body { body {

 background-color: magenta; background-color: magenta;

 } }

</</stylestyle>>

</</headhead>>

<<bodybody>>

Hello {{ module }}!Hello {{ module }}!

</</bodybody>>

4 . 6

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

Flask (6)
Creating a Flask Application with a Form
Python Flask Application

fromfrom flask flask importimport Flask Flask,, render_template render_template,, request request

fromfrom flask_wtf flask_wtf importimport Form Form

fromfrom wtforms wtforms importimport StringField StringField,, IntegerField IntegerField,, SubmitField SubmitField

app app == Flask Flask((__name____name__))

appapp..secret_key secret_key == 'potato''potato'

classclass SampleFormSampleForm((FormForm))::

 moduleCode moduleCode == IntegerField IntegerField(("Code""Code"))

 moduleName moduleName == StringField StringField(("Name""Name"))

 school school == StringField StringField(("School""School"))

 submit submit == SubmitField SubmitField(("Send""Send"))

@app@app..routeroute(('/''/',, methodsmethods==[['GET''GET',, 'POST''POST']]))

HTML Template

<<htmlhtml>>

<<headhead>>

<<titletitle>>{{ title }}{{ title }}</</titletitle>>

<<linklink relrel==""stylesheetstylesheet"" hrefhref==""https://cdn.jsdelivr.net/npm/bohttps://cdn.jsdelivr.net/npm/bo

</</headhead>>

<<bodybody>>

<<formform actionaction==""{{ url_for('index') }}{{ url_for('index') }}"" methodmethod==""POSTPOST"">>

 {{ form.hidden_tag }} {{ form.hidden_tag }}

<<divdiv classclass==""card w-50 m-2card w-50 m-2"">>

<<h5h5 classclass==""card-headercard-header"">>New Module FormNew Module Form</</h5h5>>

<<divdiv classclass==""card-bodycard-body"">>

4 . 7

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

Flask (7)
Creating a RESTful Interface within a Flask Application
fromfrom flask flask importimport Flask Flask,, jsonify jsonify,, make_response make_response

app app == Flask Flask((__name____name__))

modules modules == [[

{{"code""code":: "5062CEM""5062CEM",, "title""title":: "Programming and Algorithms 2""Programming and Algorithms 2",, "leader""leader":: "Dr Ian Cornelius""Dr Ian Cornelius"}},,

{{"code""code":: "4061CEM""4061CEM",, "title""title":: "Programming and Algorithms 1""Programming and Algorithms 1",, "leader""leader":: "Dr Ian Cornelius""Dr Ian Cornelius"}}

]]

@app@app..routeroute(("/modules""/modules",, methods methods==[['GET''GET']]))

defdef list_moduleslist_modules(())::

 response response == make_response make_response((jsonifyjsonify((modulesmodules)),, 200200))

 response response..headersheaders[['Content-Type''Content-Type']] == "application/json""application/json"

returnreturn response response

@app@app routeroute(("/modules/<id>""/modules/<id>" methodsmethods==[['GET''GET']]))

4 . 8

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

Goodbye

5 . 1

 5062CEM Programming and Algorithms 2
REST Interfaces and Flask

Goodbye (1)
Questions and Support

Questions? Post them on the Community Page on Aula
Additional Support? Visit the
Contact Details:

Dr Ian Cornelius,

Module Support Page

ab6459@coventry.ac.uk

5 . 2

https://github.coventry.ac.uk/pages/CUEH/5062CEM/module/support/
mailto:ab6459@coventry.ac.uk

