
 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Sockets and Networking with Python
Dr Ian Cornelius

1

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Hello

2 . 1

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Hello (1)
Learning Outcomes
1. Understand the concept of networking and sockets in Python
2. Demonstrate knowledge on how to use sockets in a body of work

2 . 2

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Socket Programming

3 . 1

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Socket Programming (1)
What is Socket Programming?

An abstract principle whereby two programs can share a data stream
Commonly done using an Application Programming Interface (API)

uses different protocols available in the internet TCP/IP stack
Sockets are used to exploit the capabilities of an operating system to interact with the network
Network sockets are used to establish a connection between processes on the same machines, or different ones
A socket address is composed of two things:
1. an IP address
2. a port number
Sockets consist of two primary properties, controlling how they send data:
1. Address Family
2. Socket Type

3 . 2

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Socket Programming (2)
Address Family

This controls the Open Systems Interconnection (OSI) network layer protocol that is used
There are three address families in Python:

AF_INET

the most common and is used for IPv4 addresses
the majority of networking is done using IPv4
use IP addresses and port numbers

an IP can be represented in its IP form (127.0.0.1)
or in its 32-bit form (0x7F000001')

AF_INET6

used for IPv6 addresses and represented as 128-bit (16
byte) address

e.g. 127.0.0.1 is represented as
0000:0000:0000:0000:0000:ffff:7f00:0001

considered to be the next generation of internet protocol
not as common as IPv4, but it is growing

AF_UNIX

used for Unix Domain Sockets (UDS)
an interprocess communication protocol on POSIX-
compliant systems
allows an operating system to pass data from process to
process, without going through the network stack

3 . 3

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Socket Programming (3)
Socket Type

There are two socket types in Python:
1. SOCK_DGRAM

used for User Datagram Protocol (UDP)
it does not require a transmission handshake or other setup
offers lower reliability of delivery
UDP messages may be delivered out of order, more than once, or not at all
commonly used for protocols where order is less important or multicasting

2. SOCK_STREAM
used for Transmission Control Protocol (TCP)
ensures each message is delivered exactly once, and in the correct order
applications that deliver large amounts of data (such as HTTP) use TCP

3 . 4

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Using Sockets in Python

4 . 1

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Using Sockets in Python (1)
A socket will be specified by:

a machine’s IP address
a port it is listening to
a protocol it uses

Sockets in Python used a module known as socket

importimport socket socket

Creating a socket is done by using the function socket() from the module
The general syntax for the socket() function is the following:

x x == socket socket..socketsocket((socket_familysocket_family,, socket_type socket_type,, protocol protocol==00))

The syntax above shows:
family: refers to the address family
type: refers to the type of the socket
proto: this number is usually zero; but can be different in other use-cases

4 . 2

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Using Sockets in Python (2)
The socket Module i

Provides all functionality for writing TCP and UDP clients and servers
Most applications use the concept of client/server:

server: represents an application that is waiting for connection by a client
client: represents an application that connects to the server

These functions are commonly used for both clients and servers:
socket.recv(buflen)

receives data from the socket; argument indicates the maximum amount of data to be received
sockwt.recfrom(buflen)

receives data and the address of the sender
socket.rec_into(buffer)

receives data and is placed into a buffer
socket.recfrom_into(buffer)

receives data and is placed into a buffer, also returns the address of the sender
socket.send(bytes)

sends bytes of data to a specified target

4 . 3

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Using Sockets in Python (3)
The socket Module ii

These functions are commonly used for both clients and servers: (continued)
socket.sendto(data, address)

sends data to a given address
socket.sendall(data)

sends all the data in the buffer to the socket
socket.close()

releases the memory and closes the connection
Want more information about the socket module?

Python Socket Documentation

4 . 4

https://docs.python.org/3/library/socket.html

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Using Sockets in Python (4)
The socket Module iii
Example 1: Retrieving Data from a Local Website

Create two variables, ip and port with the values of the local
address/site you wish to connect to

i.e. ip = 127.0.0.1 and port = 80
A socket is created using:

AF_INET - the type of address family used, in this case IPv4
SOCK_STREAM - the type of connection being made, in this
case enabling us to send and receive a message to a web
server

A connection is then made to the IP address and port number
passed through the connect function as a tuple argument
e.g. s.connect((ip, port))

The message is sent to the server using the sendall function
e.g. s.sendall("GET /5062CEM.php\r\n")

Data is returned from the server, and captured using the recv
function

recv accepts a single argument, and it is the number of
bytes to retrieve from the web server
e..g s.recv(1024)

importimport socket socket

ip ip == '127.0.0.1''127.0.0.1'

port port == 8080

message message == "GET /5062CEM.php\r\n""GET /5062CEM.php\r\n"

withwith socket socket..socketsocket((socketsocket..AF_INETAF_INET,, socket socket..SOCK_STREAMSOCK_STREAM)) asas s s::

 s s..connectconnect((((ipip,, port port))))

 s s..sendallsendall((messagemessage..encodeencode(())))

 data data == s s..recvrecv((10241024))

data -> b’<html>\n<head>\n\t<title>5062CEM - Networking

Demo</title>\n</head>\n<body>\nHello, welcome to 5062CEM!</body>\n’

data2 data2 == s s..recvrecv((1010))

data2 -> b’<html>\n<he’

4 . 5

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Using Sockets in Python (5)
The socket Module iv
Example 2: Sending Data to a Local Website

Create two variables, ip and port with the values of the local
address/site you wish to connect to

i.e. ip = 127.0.0.1 and port = 80
A socket is created using:

AF_INET - the type of address family used, in this case IPv4
SOCK_STREAM - the type of connection being made, in this
case enabling us to send and receive a message to a web
server

A connection is then made to the IP address and port number
passed through the connect function as a tuple argument
e.g. s.connect((ip, port))

The message is sent to the server using the sendall function
e.g. s.sendall("GET /5062CEM.php?
lecturer=Ian%20Cornelius \r\n")

Data is returned from the server, and captured using the recv
function

recv accepts a single argument, and it is the number of
bytes to retrieve from the web server
e g s recv(136)

importimport socket socket

ip ip == '127.0.0.1''127.0.0.1'

port port == 8080

message message == "GET /5062CEM.php?lecturer=Ian%20Cornelius \r\n""GET /5062CEM.php?lecturer=Ian%20Cornelius \r\n"

withwith socket socket..socketsocket((socketsocket..AF_INETAF_INET,, socket socket..SOCK_STREAMSOCK_STREAM)) asas s s::

 s s..connectconnect((((ipip,, port port))))

 s s..sendallsendall((messagemessage..encodeencode(())))

 data data == s s..recvrecv((136136))

data -> b’<html>\n<head>\n\t<title>5062CEM - Networking

Demo</title>\n</head>\n<body>\nHello Ian Cornelius, and welcome to

5062CEM!</body>\n’

message message == "GET /5062CEM.php?lecturer=Terry%20Richards \r\n""GET /5062CEM.php?lecturer=Terry%20Richards \r\n"

data -> b’<html>\n<head>\n\t<title>5062CEM - Networking

Demo</title>\n</head>\n<body>\nHello Terry Richards, and welcome to

5062CEM!</body>\n’

4 . 6

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Using Sockets in Python (6)
Server socket Functions

With client-server architecture, there is a central server
The central server provides services to a set of machines that are connected to it
These functions are commonly used as point of view from the server:

socket.bind(address)

connects to the address with the socket
the requirement is that the socket must be open before establishing a connection with the address

socket.listen(count)

the argument denotes the maximum number of connections from clients
it starts the TCP listener for incoming connections

socket.accept()

accepts client connections and returns a tuple representing the client socket and client address
bind() and listen() should be called before using this function

4 . 7

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Using Sockets in Python (7)
Client socket Functions

These are functions that are used on a client machine to connect with the central server:
socket.connect(address)

connects to the server IP address
socket.connect_ex(address)

same functionality as connect()
offers the possibility of returning an error if not able to connect

4 . 8

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Goodbye

5 . 1

 5062CEM Programming and Algorithms 2
Sockets and Networking with Python



Goodbye (1)
Questions and Support

Questions? Post them on the Community Page on Aula
Additional Support? Visit the
Contact Details:

Dr Ian Cornelius,

Module Support Page

ab6459@coventry.ac.uk

5 . 2

https://github.coventry.ac.uk/pages/CUEH/5062CEM/module/support/
mailto:ab6459@coventry.ac.uk

