
 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Traversal Algorithms
Dr Ian Cornelius

1

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Hello

2 . 1

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Hello (1)
Learning Outcomes
1. Understand the concept of different algorithms for traversing a graph
2. Implement and use a graph traversing algorithm in their bodies of work

2 . 2

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Traversal

3 . 1

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Traversal (1)
Traversing a Graph

Storing data within a graph is fairly easy
However, they are not useful until you can search for data or find information about the interconnections
Algorithms that interrogate the graph by following the edges are known as traversal algorithms

3 . 2

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Traversal (2)
Principles for Traversing a Graph
1. Start from a root node

this may be specific to the problem
i.e. the starting address in a route planner

or it could be the node in the graph
or it may be something intelligently selected based on the search parameters

i.e. looking for restaurants near-by in a graph consisting of points of interest, and there is a starting node that is specific to
restaurant searches

2. There is a goal node
this may be the address you are trying to navigate to in the route planner
it may be parameters defining a goal node or a set of goal nodes

i.e. a list of universities at least 200 miles away from my parents’ house
3. The graph is traversed from node to node, along the edges that connect them

this is done until the goal is reached
or a satisfactory node has met the parameters
or a large set of nodes which meet the parameters are found

0
th

3 . 3

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Traversal (3)
Approaches for Traversing a Graph

There are various approaches to solving this problem of traversing a graph
however, there is no best method of doing this

The nature of the data you are after matters when choosing a graph traversal algorithm
The structure of the graph also matters
The desired output also matters

this could be a single specific node
the first node that meets a set of parameters
several nodes that meet the set of parameters

3 . 4

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Traversal Algorithms

4 . 1

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Traversal Algorithms (1)
Depth-First Search (DFS)

Standard DFS implementation will put each vertex of the graph into one of two categories:
1. Visited
2. Unvisited
The algorithm will mark each vertex as visited whilst avoiding cycles
The algorithm consists of the following steps:
1. Add any of the graph vertices on top of a stack
2. Take the top item of the stack and add it to the visited list
3. Create a list of the adjacent vertices for that node

add any that are not in the visited list to the top of the stack
4. Keep repeat steps 2 and 3 until the stack is empty

4 . 2

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Traversal Algorithms (2)
DFS on an Undirected Graph

Click Start to proceed!

Start

Unvisited Visited

A

B

C

D

E

4 . 3

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Traversal Algorithms (3)
DFS on a Directed Graph

Click Start to proceed!

Start

Unvisited Visited

A

B C D

E

F

G

H

4 . 4

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Traversal Algorithms (4)
Time Complexity of DFS

The time complexity of DFS is represented in the form , where

 is the number of nodes
 is the number of edges

The space complexity of DFS is , where is the number of nodes
DFS is useful in the following applications:

detecting a cycle in a graph
topological sorting
finding strongly connected components of a graph
path finding

O(V + E)
V
E

O(V) V

4 . 5

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Traversal Algorithms (5)
Breadth-First Search (BFS)

Standard BFS implementation will put each vertex of the graph into one of two categories:
1. Visited
2. Not Visited (Queue)
The algorithm will mark each vertex as visited whilst avoiding cycles
The algorithm consists of the following steps:
1. Start by putting any one of the graph’s vertices to the back of a queue
2. Take the front item of the queue and add it to the visited list
3. Create a list of those vertices adjacent nodes and add any which are not in the visited list to the back of the queue
4. Keep repeating steps 2 and 3 until the queue is empty

4 . 6

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Traversal Algorithms (6)
BFS on an Undirected Graph

Click Start to proceed!

Start

Unvisited Visited

A

B

C

D

E

4 . 7

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Traversal Algorithms (7)
Time Complexity of BFS

The time complexity of BFS is represented in the form , where

 is the number of nodes
 is the number of edges

The space complexity of BFS is , where is the number of nodes
BFS is useful in the following applications:

shortest path in a graph (the least number of edges)
peer to peer (P2P) networks
search engine crawlers

O(V + E)
V
E

O(V) V

4 . 8

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Theory Continued

5 . 1

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Theory Continued (1)
Recap: Directed Acyclic Graphs (DAG)

DAGs are directed graphs with no cycles
hence the term acyclic

Testing for no cycles can be achieved by:
a Depth-First Search (DFS)
if a directed graph has a cycle, then a back arc will always
be encountered in any depth-first search of the graph

A B C

D

E

F

G

5 . 2

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Theory Continued (2)
Topological Sorting

A process of assigning a linear order to the vertices of a DAG
Time complexity is , where

 is the number of edges
 is the number of nodes

Follows a set order of principles:
1. Identify a node with no incoming connections
2. Add that node to the topological sort list
3. Remove the node from the graph
4. Repeat

Topological Sort:
['F', 'C', 'D', 'B', 'A', 'E']

['F', 'C', 'D', 'B', 'E', 'A']

O(M +N)
M
N

A B

C

DE

F

5 . 3

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Theory Continued (3)
Walkthrough: Topological Sorting

Click Start to proceed!

Start

AB

C

D

E

5 . 4

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Theory Continued (4)
Density of Graphs

Graph density tells us how full the graph
is

i.e. how many connections exist in
relation to the number of nodes

To formulate how dense a graph is, we
need to know the size and order of a
graph

the size is the number of edges,

the order is the number of vertices,

Sparse Graph Dense Graph

|E|

|V |

A

BC

D E

A

BC

D E

5 . 5

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Theory Continued (5)
Spanning Trees

A spanning tree is a subgraph of an undirected, connected graph
it will include all vertices of the graph with a minimum possible number of edges
edges may contain weights or not

The total number of spanning trees is equal to

where is the number of vertices

Example of a Spanning Tree
Normal Graph Sub-Graphs

n
(n−2)

n

A B

CD

A B

CD

A B

CD

5 . 6

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Graph Theory Continued (6)
Minimum Spanning Tree (MST)

A minimum spanning tree is a spanning tree whereby the
minimum is the sum of weights that is the smallest

Sub-Graphs

Sum of Weights: 8 Sum of Weights: 7 Sum of Weights: 11

A B

CD

4
5 1

2

A B

CD

5 1
2

A B

CD

4
1

2

A B

CD

4
5

2

5 . 7

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Dijkstra’s Algorithm

6 . 1

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Dijkstra’s Algorithm (1)
An algorithm to find the shortest path between nodes in a graph
Produces the shortest path tree
Works on both directed and non-directed graphs

one condition: edges must have a non-negative weight
Simply, it is used to find the shortest path with the lowest cost
Dijkstra’s Algorithm can be applied to the following:

Google Maps
IP Routing
Word Ladder Puzzles
Social Network Analysis

6 . 2

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Dijkstra’s Algorithm (2)
Algorithm Steps
1. Mark all nodes in the graph as unvisited
2. Pick a starting node, and set the current distance as and all other nodes with infinity
3. Select the starting node and mark it as the current selected node

for this node, analyse all of its neighbours and measure their distances by summing the current distance
this is done with the current node with the weight of the edge to the neighbouring node

4. Compare the measured distance with the current distance assigned to the neighbouring node
mark this as the new current distance for the neighbouring node

5. Consider all the unvisited neighbouring nodes, and mark the current node as visited
if the destination node has been marked as visited, then stop
else choose an unvisited node marked with the least distance;

select it as the new current node and repeat the process from step 3

0

6 . 3

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Dijkstra’s Algorithm (3)
Walkthrough of Dijkstra

Start

Unvisited Visited

A

B C

D E

6

1

5

22

1

2 5

6 . 4

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Goodbye

7 . 1

 5062CEM Programming and Algorithms 2
Graph Traversal Algorithms

Goodbye (1)
Questions and Support

Questions? Post them on the Community Page on Aula
Additional Support? Visit the
Contact Details:

Dr Ian Cornelius,

Module Support Page

ab6459@coventry.ac.uk

7 . 2

https://github.coventry.ac.uk/pages/CUEH/5062CEM/module/support/
mailto:ab6459@coventry.ac.uk

