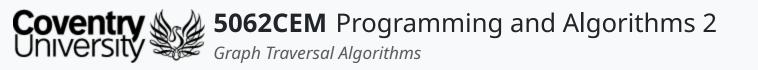
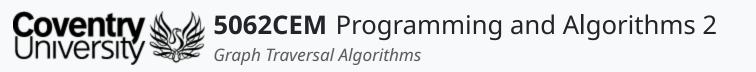


Graph Traversal Algorithms

Dr Ian Cornelius

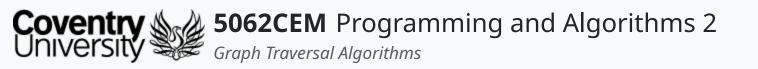


Hello

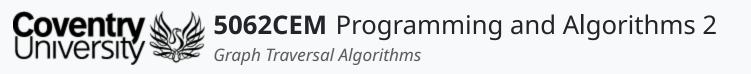


Hello (1) Learning Outcomes

- 1. Understand the concept of different algorithms for traversing a graph
- 2. Implement and use a graph traversing algorithm in their bodies of work

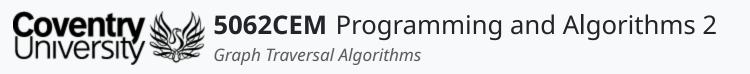


Graph Traversal



Graph Traversal (1) Traversing a Graph

- Storing data within a graph is fairly easy
- However, they are not useful until you can search for data or find information about the interconnections
- Algorithms that interrogate the graph by following the edges are known as **traversal algorithms**



Graph Traversal (2) Principles for Traversing a Graph

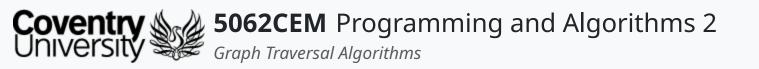
- 1. Start from a *root* node
 - this may be specific to the problem
 - i.e. the starting address in a route planner
 - \circ or it could be the ${f n}th$ node in the graph
 - or it may be something intelligently selected based on the search parameters
 - i.e. looking for restaurants near-by in a graph consisting of points of interest, and there is a starting node that is specific to *restaurant* searches
- 2. There is a *goal* node
 - this may be the address you are trying to navigate to in the route planner
 - it may be parameters defining a goal node or a set of goal nodes
 - i.e. a list of universities at least 200 miles away from my parents' house
- 3. The graph is traversed from node to node, along the edges that connect them
 - \circ this is done until the goal is reached
 - or a satisfactory node has met the parameters
 - or a large set of nodes which meet the parameters are found



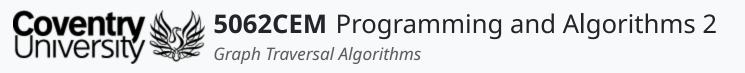
Graph Traversal (3)

Approaches for Traversing a Graph

- There are various approaches to solving this problem of traversing a graph
 however, there is no best method of doing this
- The nature of the data you are after matters when choosing a graph traversal algorithm
- The structure of the graph also matters
- The desired output *also* matters
 - $\circ\;$ this could be a single specific node
 - $\circ\;$ the first node that meets a set of parameters
 - $\circ\,$ several nodes that meet the set of parameters



Graph Traversal Algorithms



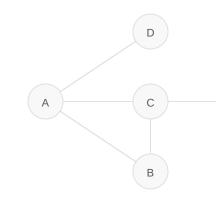
Graph Traversal Algorithms (1) Depth-First Search (DFS)

- Standard DFS implementation will put each vertex of the graph into one of two categories:
 1. Visited
 - 2. Unvisited
- The algorithm will mark each vertex as visited whilst avoiding cycles
- The algorithm consists of the following steps:
 - 1. Add any of the graph vertices on top of a stack
 - 2. Take the top item of the stack and add it to the visited list
 - 3. Create a list of the adjacent vertices for that node
 - add any that are not in the visited list to the top of the stack
 - 4. Keep repeat steps 2 and 3 until the stack is empty

Graph Traversal Algorithms (2)

DFS on an Undirected Graph

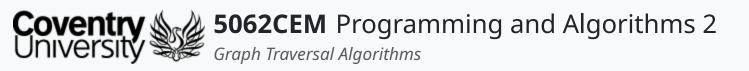
• Click **Start** to proceed!



Start

Unvisited

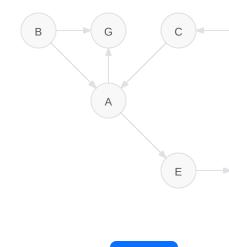
Visited



Graph Traversal Algorithms (3)

DFS on a Directed Graph

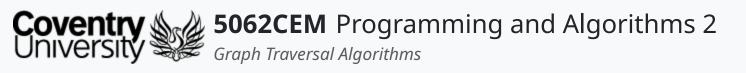
• Click **Start** to proceed!



Start

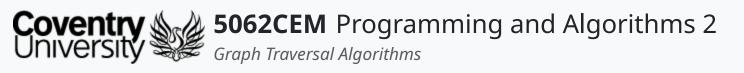
Unvisited

Visited



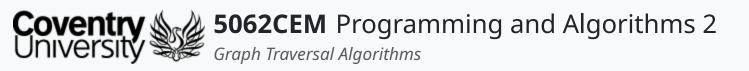
Graph Traversal Algorithms (4) Time Complexity of DFS

- The time complexity of DFS is represented in the form O(V+E) , where
 - $\circ~V~$ is the number of nodes
- The space complexity of DFS is $O(V)\,$, where $V\,$ is the number of nodes
- DFS is useful in the following applications:
 - detecting a cycle in a graph
 - \circ topological sorting
 - finding *strongly connected* components of a graph
 - path finding



Graph Traversal Algorithms (5) Breadth-First Search (BFS)

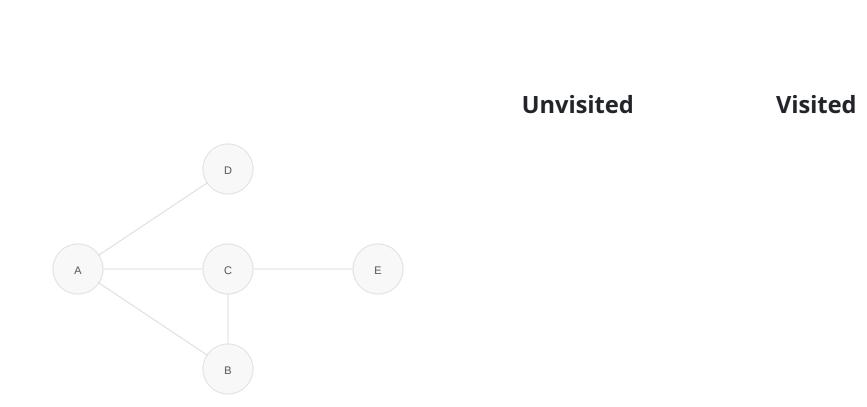
- Standard BFS implementation will put each vertex of the graph into one of two categories: 1. Visited
 - 2. Not Visited (Queue)
- The algorithm will mark each vertex as visited whilst avoiding cycles
- The algorithm consists of the following steps:
 - 1. Start by putting any one of the graph's vertices to the back of a queue
 - 2. Take the front item of the queue and add it to the visited list
 - 3. Create a list of those vertices adjacent nodes and add any which are not in the visited list to the back of the queue
 - 4. Keep repeating steps 2 and 3 until the queue is empty



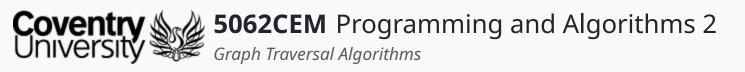
Graph Traversal Algorithms (6)

BFS on an Undirected Graph

• Click **Start** to proceed!

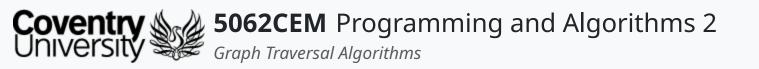


Start

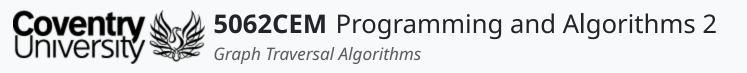


Graph Traversal Algorithms (7) Time Complexity of BFS

- The time complexity of BFS is represented in the form O(V+E) , where
 - $\circ~V~$ is the number of nodes
- The space complexity of BFS is $O(V)\,$, where $V\,$ is the number of nodes
- BFS is useful in the following applications:
 - shortest path in a graph (the least number of edges)
 - peer to peer (P2P) networks
 - \circ search engine crawlers



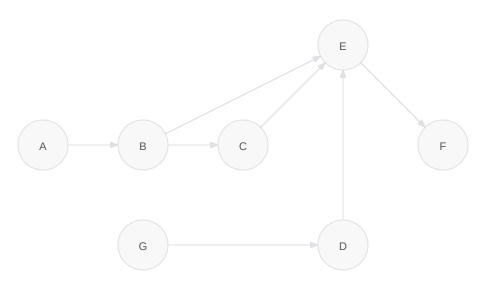
Graph Theory Continued

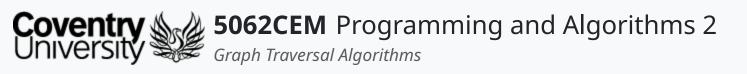


Graph Theory Continued (1)

Recap: Directed Acyclic Graphs (DAG)

- DAGs are *directed* graphs with no cycles
 hence the term **acyclic**
- Testing for no cycles can be achieved by:
 - a Depth-First Search (DFS)
 - if a directed graph has a cycle, then a back arc will always be encountered in any depth-first search of the graph

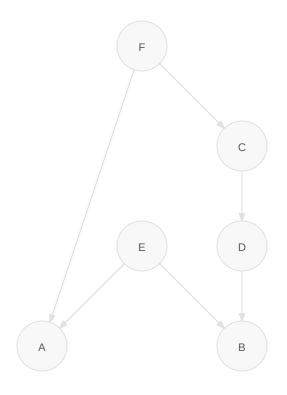




Graph Theory Continued (2) Topological Sorting

- A process of assigning a linear order to the vertices of a DAG
- Time complexity is O(M+N), where
 - \circ *M* is the number of edges
 - \circ N is the number of nodes
- Follows a set order of principles:
 - 1. Identify a node with no incoming connections
 - 2. Add that node to the topological sort list
 - 3. Remove the node from the graph
 - 4. Repeat

• Topological Sort:



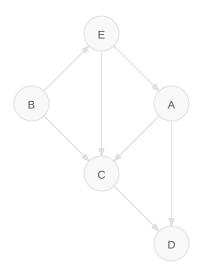
• ['F', 'C', 'D', 'B', 'A', 'E'] ○ ['F', 'C', 'D', 'B', 'E', 'A']

Graph Theory Continued (3)

Walkthrough: Topological Sorting

• Click **Start** to proceed!

Start

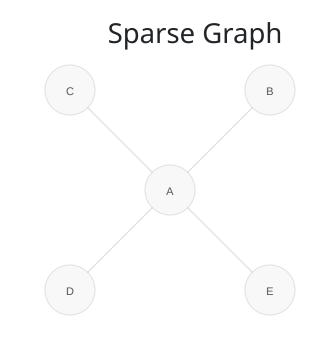


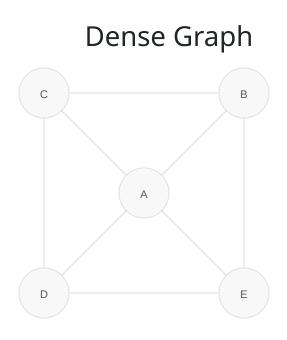


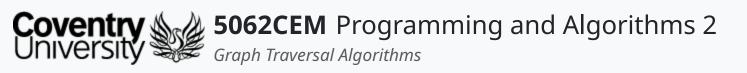
Graph Theory Continued (4) Density of Graphs

- Graph density tells us how *full* the graph is
 - i.e. how many connections exist in relation to the number of nodes
- To formulate how dense a graph is, we need to know the **size** and **order** of a graph
 - $\circ\;$ the size is the number of edges,

• the order is the number of vertices,

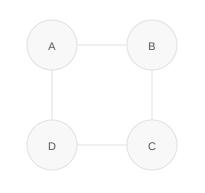




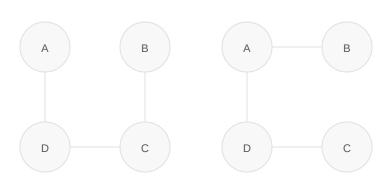


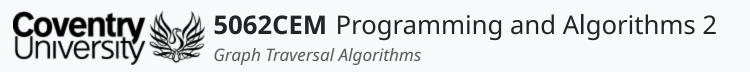
Graph Theory Continued (5) Spanning Trees

- A spanning tree is a subgraph of an undirected, connected graph
 - it will include all vertices of the graph with a minimum possible number of edges
 edges may contain weights or not
- The total number of spanning trees is equal to $_{m{n}}(n{-}2)$
 - \circ where η_{μ} is the number of vertices
- Example of a Spanning Tree
- Normal Graph



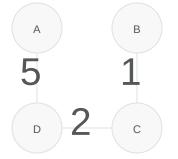
• Sub-Graphs



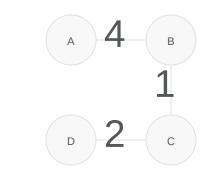


Graph Theory Continued (6) Minimum Spanning Tree (MST)

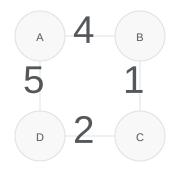
• A **minimum** spanning tree is a spanning tree whereby the minimum is the sum of weights that is the smallest

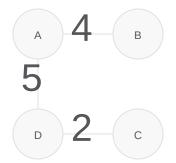


• Sum of Weights: 8

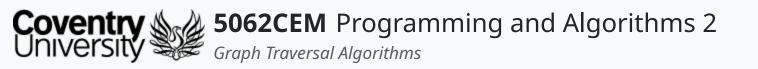


• Sum of Weights: 7

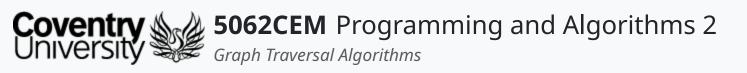




• Sum of Weights: 11



Dijkstra's Algorithm



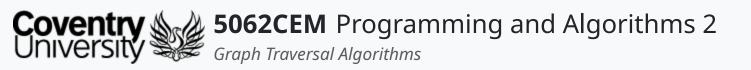
Dijkstra's Algorithm (1)

- An algorithm to find the shortest path between nodes in a graph
- Produces the shortest path tree
- Works on both **directed** and **non-directed** graphs
 one condition: edges must have a non-negative weight
- Simply, it is used to find the **shortest** path with the **lowest** cost
- Dijkstra's Algorithm can be applied to the following:
 - Google Maps
 - \circ IP Routing
 - Word Ladder Puzzles
 - Social Network Analysis

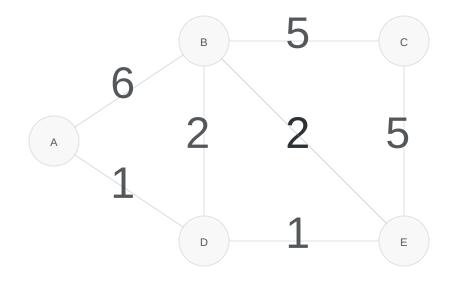
Dijkstra's Algorithm (2) Algorithm Steps

- 1. Mark all nodes in the graph as unvisited
- 2. Pick a starting node, and set the current distance as \bigcap and all other nodes with infinity
- 3. Select the starting node and mark it as the current selected node
 - for this node, analyse all of its neighbours and measure their distances by summing the current distance
 - \circ this is done with the current node with the weight of the edge to the neighbouring node
- 4. Compare the measured distance with the current distance assigned to the neighbouring node
 o mark this as the new current distance for the neighbouring node
- 5. Consider all the unvisited neighbouring nodes, and mark the current node as visited
 - **if** the destination node has been marked as visited, then stop
 - **else** choose an unvisited node marked with the least distance;
 - select it as the new current node and repeat the process from step 3

ne current distance de



Dijkstra's Algorithm (3) Walkthrough of Dijkstra

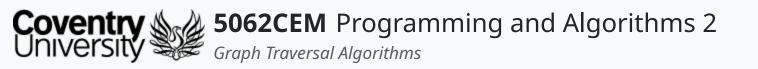


Start

Visited

Unvisited

L



Goodbye

<u>7.1</u>

Goodbye (1) Questions and Support

- Questions and Support
- Questions? Post them on the **Community Page** on Aula
 Additional Support? Visit the <u>Module Support Page</u>
- Contact Details:
 - Dr Ian Cornelius, <u>ab6459@coventry.ac.uk</u>

