GRVenY

5062CEM Programming and Algorithms 2
Graph Theory

Graph Theory

Dr Ian Cornelius

Soventry 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Hello

vent 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Hello (1)

Learning Outcomes

1. Understand the concept of graphs and their purpose as a data structure
2. Demonstrate and implement their knowledge of graphs

Soventry 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Graph Theory

vent 5062CEM Programming and Algorithms 2 C
Nniversl Graph Theory

Graph Theory (1)
What are Graphs?

e Graphs are the basis for a large amount of programming
e They are essentially a set of nodes with connections between :

them
e You may think of them as Lists: The Next Generation) D

o imagine a linked list, where any element of data can have
as many next elements and as many parents as needed

vent 5062CEM Programming and Algorithms 2 C
Nniversl Graph Theory

Graph Theory (2)

Use-cases for Graphs

e Graphs can be useful for:
1. Map analysis, route finding, path planning
2. Ranking search results
3. Analysing related data such as social networks
4, Compiler optimisation
5. Constraint satisfaction
= j.e. timetabling
6. Physics simulations
= |.e.games
7. Social connections
8. Decision-making
= j.e. goal-oriented action planning and strategies

vent 5062CEM Programming and Algorithms 2 C
Nniversl Graph Theory

Graph Theory (3)
Facebook: The Social Graph

e Draws an edge between you and the people, places and things

you interact with online
e Whenever you like something on Facebook, it becomes an edge

o This edge is a connection between you and other people,

places or things
e Your photos, events and pages are connected with other

information

friend

vent 5062CEM Programming and Algorithms 2 C
Nniversl Graph Theory

Graph Theory (4)

Formal Terminology of Graphs

e Graphs are a collection of nodes that have links between them
e There are some terminologies you need to remember: .

o nodes are called vertices edge/arc
o links (connections between nodes) are called edges (or
sometimes arcs)
= an edge is an incident if it connects to another
vertex

o connected vertices are called adjacent or neighbours
o avertices degree is a number of edges that incident on it

A D

Soventry 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Types of Graphs

Soventry 5062CEM Programming and Algorithms 2 C
Nniversl Graph Theory

Types of Graphs (1)

* There are many types of graphs:
1. Undirected

. Directed

. Vertex Labelled

. Cyclic

. Weighted

. Connected

. Disconnected

Directed Acyclic Graph (DAG)

0 N oUW N

vent 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Types of Graphs (2)
Undirected Graphs

e Edges can be traversed in either direction
e The vertices can be imagined as junctions on a road network A c ,

o the edges are a two-way road between junctions
o i.e.you can travel from node A to node B and then travel

back from node B to node A

vent 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Types of Graphs (3)
Directed Graphs

e Each edge is directional and does not imply the inverse
e The vertices can be imagined as junctions on a road network A c 8

o the edges are a one-way roads between junctions
o i.e. we can travel from node A to node ¢ but we cannot

travel back to node A

vent 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Types of Graphs (4)
Vertex Labelled

e The data used to identify each node is not the only information
that is important about that node c

o i.e. it may also have a colour assigned to it that affects the

algorithm decision or choice . i
e The nodes can be imagined as roundabouts or slip-roads on a
road network

o i.e. ared node is a heavily congested roundabout and
should be bypassed

vent 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Types of Graphs (5)
Cyclic
e Consists of at least one cycle

o i.e.there is a path that exists from a single node that can A o :

lead back to itself
e Imagine our road network again; it is a roundabout where there
IS a vertex for each junction

Soventry 5062CEM Programming and Algorithms 2 C
Nniversl Graph Theory

Types of Graphs (6)

Weighted
e Parameters along edges or at nodes are interval data and can be
summed and/or compared ,
e This is similar to vertex labelled but more versatile) O 2 O i 4 i
e Thinking about the road network example, the weight of our 14) 34

graph edges could be according to the speed limit
o it could mean the algorithm would favour faster roads

over a slower road in route planning

vent 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Types of Graphs (7)

Connected

e There is an edge between every pair of nodes in a graph

vent 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Types of Graphs (8)
Disconnected

e There is a node that does not have any connection to a node in
the graph :
o the red node makes our graph disconnected

vent 5062CEM Programming and Algorithms 2 C
Nniversl Graph Theory

Types of Graphs (9)
Directed Acyclic Graph (DAG)

e Links in these graphs have a direction and there are no cycles
e It consists of vertices and edges, where each edge is directed A
from one vertex to another

o they follow the directions of the other nodes and never

form a closed loop
e It Can be visualised like a river system heading out to sea

o it may fork and join at parts, but it always does so going
downstream

Soventry 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Degrees, In-degrees and Out-degrees

vent 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Degrees, In-degrees and Out-degrees (1)

* Recap: Degrees count the number of edges connected to a node
e Three types of degrees for a graph:

1. degree

2. in-degree

3. out-degree

vent 5062CEM Programming and Algorithms 2 C
Nniversl Graph Theory

Degrees, In-degrees and Out-degrees (2)
Undirected Graphs

e Concerned with only counting the total number of connections for a node
o in this instance, the degree

Vertex Degree

A

m m O N W

vent 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Degrees, In-degrees and Out-degrees (3)
Directed Graphs

e Concerned with counting:
o the total number of connections, known as the degree
o the number of incoming connections, known as the in-degree
o the number of outgoing connections, known as the out-degree

Vertex Degree In-Degree Out-Degree

A
B
C
D

Populate

Soventry 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Representation of Graphs

vent 5062CEM Programming and Algorithms 2 C
Nniversl Graph Theory

Representation of Graphs (1)

Mathematical Notation

e The elements of a graph can be represented in different

methods: A
o vertices with integers (or any unique value)
o edges as a pair of vertices, i.e. (1, 0) i

e A graph G will consist of a set of vertices v and a set of edges E

o representedasG = (V, E))
e nand mcan be used to represent the number of vertices and

edges)

o think n for node if you find it difficult to remember which

way around these go i
e G = (V, E), where,

oV =1[A, B, C, D, E]
© E — [(AIB)I (BID)I (CID)I (CIE)I (DIE)]

Final form:;

-G=(|A,B,C,D,E|, |(A,B),(B,D),(C,D),(C,FE),(D,FE)|)

vent 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Representation of Graphs (2)
Programming Methodology

e When it comes to representing a graph in programming, there are two ways of implementing a graph:
1. Adjacency Matrices
2. Adjacency Lists

vent 5062CEM Programming and Algorithms 2 C
Nniversl Graph Theory

Representation of Graphs (3)

Adjacency Matrices

e A two-dimensional matrix of boolean values

o the value of acell (i, j) is true if the vertices are ;
connected
e Adjacency matrices are symmetrical along the diagonal for ;

undirected graphs
e However, for directed graphs a connection (1, 2) does not imply

a connection between (2, 1)

e Adjacency matrix requires O(,nQ) space, where 7 is the
number of vertices |
e Code Representation:

aGraph = |
| False, True, False, False, False],
| True, False, False, True, False],
| False, False, False, True, True],
| False, True, True, False, True],
| False, False, True, True, False]

e Tabular Representation:

A B C D E

N T

vent 5062CEM Programming and Algorithms 2 C
Nniversl Graph Theory

Representation of Graphs (4)
Adjacency List

e Each vertex contains a list of vertices that it is connected to the

other A
o often stored as a dictionary in Python
e Adjacency lists requires up to O(n _|_ m) space ;
o where 7, is the number of nodes in our graph and . is
the number of edges ;

e Code Representation:

aGraph = {
"A": ['B'],
"B": ['A', 'D'],]
"c": ['D', 'E'],
"D": ['B', 'C', "E'],
"E": ['C', 'D']
}

e Tabular Representation:

Vertex Adjacency List
A B
B A, D

C E,D

vent 5062CEM Programming and Algorithms 2 C
Nniversl Graph Theory

Representation of Graphs (5)
Recap: Weighted Graphs

e Itis sometimes useful to store a number with each edge
o this will change the way the graphs are represented ¢
e The adjacency matrix is now numerical instead of boolean 4 3
e Unconnected nodes can be given a default value, such as infinity
(OO) for shortest path finding

e The adjacency list must sture edges as pairs, including the
connection and the weight

o For example, a tuple could easily be represented using a
simple struct with two variables

m int neighbour and float weighting
e (0, 5.0)

vent 5062CEM Programming and Algorithms 2 C
Nniversl Graph Theory

Representation of Graphs (6)
Adjacency Matrix — Weighted

e For a weighted adjacency matrix, boolean values are replaced
with numbers

o i.e. the cost of traversing from one node to another 4
e Note: That if your weightings are positive floating point values
o may benefit you by making the False values a negative

number, i.e. -1, rather than checking for == 0.0f
e Code Representation:

aGraph = |
(-1, 5, -1, -1, -1],
[5, -1, -1, 7, -1],
(-1, -1, -1, 4, 8],
-1, 7, 4, -1, 3],
(-1, -1, 8, 3, -1]

]

e Tabular Representation:

A B C D E
A 5
B 5 7/
C 4 3

vent 5062CEM Programming and Algorithms 2 C
Nniversl Graph Theory

Representation of Graphs (7)
Adjacency List — Weighted

e For a weighted adjacency lists, connected nodes have an
associated weight provided next to them 5

o i.e. a number provided in brackets 4 8
e Code Representation: .5 . 7 . 3]

aGraph = {

‘At [('B',5)],
S0 R EED)
~i [CDE L4,
YO
NRECRIEIE

EONF
,8)1,
,4), ("EN,3)1,
53)]

m o N @

~~ A~ ~
O m m O

}

e Tabular Representation:

Node Adjacency List
A B(5)
B A(5), D(7)
C E(4), D(8)
D B(7), C(4), E(3)
E C(8), D(3)

Soventry 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Goodbye

vent 5062CEM Programming and Algorithms 2
Nniversl Graph Theory

Goodbye (1)
Questions and Support

e Questions? Post them on the Community Page on Aula
e Additional Support? Visit the Module Support Page
e Contact Details:

o DrIan Cornelius, ab6459@coventry.ac.uk

https://github.coventry.ac.uk/pages/CUEH/5062CEM/module/support/
mailto:ab6459@coventry.ac.uk

