

Graph Theory

Dr Ian Cornelius

Hello

Hello (1) Learning Outcomes

- 1. Understand the concept of graphs and their purpose as a data structure
- 2. Demonstrate and implement their knowledge of graphs

Graph Theory

Graph Theory (1)

What are Graphs?

- Graphs are the basis for a large amount of programming
- They are essentially a set of nodes with connections between them
- You may think of them as Lists: The Next Generation
 - imagine a linked list, where any element of data can have as many *next* elements and as many parents as needed

Graph Theory (2) Use-cases for Graphs

- Graphs can be useful for:
 - 1. Map analysis, route finding, path planning
 - 2. Ranking search results
 - 3. Analysing related data such as social networks
 - 4. Compiler optimisation
 - 5. Constraint satisfaction
 - i.e. timetabling
 - 6. Physics simulations
 - i.e. games
 - 7. Social connections
 - 8. Decision-making
 - i.e. goal-oriented action planning and strategies

Graph Theory (3) Facebook: The Social Graph

- Draws an edge between you and the people, places and things you interact with online
- Whenever you like something on Facebook, it becomes an edge
 - This edge is a connection between you and other people, places or things
- Your photos, events and pages are connected with other information

Graph Theory (4)

Formal Terminology of Graphs

- Graphs are a collection of nodes that have links between them
- There are some terminologies you need to remember:
 - nodes are called vertices
 - *links* (connections between nodes) are called **edges** (or sometimes **arcs**)
 - an edge is an **incident** if it connects to another vertex
 - connected vertices are called **adjacent** or **neighbours**
 - $\circ~$ a vertices degree is a number of edges that incident on it

Types of Graphs

Types of Graphs (1)

- There are many types of graphs:
 - 1. Undirected
 - 2. Directed
 - 3. Vertex Labelled
 - 4. Cyclic
 - 5. Weighted
 - 6. Connected
 - 7. Disconnected
 - 8. Directed Acyclic Graph (DAG)

Types of Graphs (2) Undirected Graphs

- Edges can be traversed in either direction
- The vertices can be imagined as junctions on a road network
 - the edges are a two-way road between junctions
 - i.e. you can travel from node A to node B and then travel back from node B to node A

Types of Graphs (3) Directed Graphs

- Each edge is directional and does **not** imply the inverse
- The vertices can be imagined as junctions on a road network
 - the edges are a one-way roads between junctions
 - i.e. we can travel from node A to node C but we cannot travel back to node A

Types of Graphs (4)

Vertex Labelled

- The data used to identify each node is not the only information that is important about that node
 - i.e. it may also have a colour assigned to it that affects the algorithm decision or choice
- The nodes can be imagined as roundabouts or slip-roads on a road network
 - i.e. a red node is a heavily congested roundabout and should be bypassed

Types of Graphs (5) Cyclic

- Consists of at least one *cycle*
 - i.e. there is a path that exists from a single node that can lead back to itself
- Imagine our road network again; it is a roundabout where there is a vertex for each junction

Types of Graphs (6)

Weighted

- Parameters along edges or at nodes are interval data and can be summed and/or compared
- This is similar to vertex labelled but more versatile
- Thinking about the road network example, the weight of our graph edges could be according to the speed limit
 - it could mean the algorithm would favour faster roads
 over a slower road in route planning

Types of Graphs (7) Connected

• There is an edge between every pair of nodes in a graph

(

Types of Graphs (8) Disconnected

- There is a node that does **not** have any connection to a node in the graph
 - the red node makes our graph *disconnected*

Types of Graphs (9) Directed Acyclic Graph (DAG)

- Links in these graphs have a direction and there are no cycles
- It consists of vertices and edges, where each edge is directed from one vertex to another
 - they follow the directions of the other nodes and never form a closed loop
- It Can be visualised like a river system heading out to sea
 - it may fork and join at parts, but it always does so going downstream

Degrees, In-degrees and Out-degrees

Degrees, In-degrees and Out-degrees (1)

- **Recap**: Degrees count the number of edges connected to a node
- Three types of *degrees* for a graph:
 - 1. degree
 - 2. in-degree
 - 3. out-degree

Degrees, In-degrees and Out-degrees (2) Undirected Graphs

Concerned with only counting the total number of connections for a node
 o in this instance, the **degree**

Vertex	Degree
А	
В	
С	
D	
E	
F	

Populate

Degrees, In-degrees and Out-degrees (3) Directed Graphs

- Concerned with counting:
 - $\circ~$ the total number of connections, known as the degree
 - the number of incoming connections, known as the **in-degree**
 - $\circ~$ the number of outgoing connections, known as the ${\color{black} out-degree}$

Vertex	Degree	In-Degree	Out-Degree
Α			
В			
С			
D			

Populate

Representation of Graphs

Representation of Graphs (1)

Mathematical Notation

- The elements of a graph can be represented in different methods:
 - vertices with integers (or any unique value)
 - \circ edges as a pair of vertices, i.e. (1, \circ)
- A graph G will consist of a set of vertices V and a set of edges E \circ represented as G = (V, E)
- n and m can be used to represent the number of vertices and edges
 - think n for node if you find it difficult to remember which way around these go
- G = (V, E), where,
 - \circ V = [A, B, C, D, E]
 - $\circ E = [(A,B), (B,D), (C,D), (C,E), (D,E)]$
- Final form:

G = ([A, B, C, D, E], [(A, B), (B, D), (C, D), (C, E), (D, E)])

Representation of Graphs (2)

Programming Methodology

- When it comes to representing a graph in programming, there are two ways of implementing a graph:
 - 1. Adjacency Matrices
 - 2. Adjacency Lists

Representation of Graphs (3)

Adjacency Matrices

- A two-dimensional matrix of boolean values
 - the value of a cell (i, j) is true if the vertices are connected
- Adjacency matrices are symmetrical along the diagonal for undirected graphs
- However, for directed graphs a connection (1, 2) does not imply a connection between (2, 1)
- Adjacency matrix requires $O(n^2)$ space, where n_{μ} is the number of vertices
- Code Representation:

```
aGraph = [
  [False, True, False, False, False, False],
  [True, False, False, True, False],
  [False, False, False, True, True],
  [False, True, True, False, True],
  [False, False, True, True, False]
]
```

• Tabular Representation:

Representation of Graphs (4)

Adjacency List

- Each vertex contains a list of vertices that it is connected to the other
 - $\circ~$ often stored as a dictionary in Python
- Adjacency lists requires up to O(n+m) space
 - $\circ\,$ where ${\boldsymbol \eta}_{\!\scriptscriptstyle \! \! \! \! \! \! }$ is the number of nodes in our graph and ${\boldsymbol m}_{\!\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! }$ is the number of edges
- Code Representation:

```
aGraph = {
    "A": ['B'],
    "B": ['A', 'D'],
    "C": ['D', 'E'],
    "D": ['B', 'C', 'E'],
    "E": ['C', 'D']
}
```

• Tabular Representation:

Vertex	Adjacency List	
Α	В	
В	A, D	
С	E, D	

Representation of Graphs (5) Recap: Weighted Graphs

- It is sometimes useful to store a number with each edge
 this will change the way the graphs are represented
- The adjacency matrix is now numerical instead of boolean
- The adjacency list must sture edges as pairs, including the connection and the weight
 - For example, a tuple could easily be represented using a simple struct with two variables
 - Int neighbour and float weighting
 - i.e. (0, 5.0)

Representation of Graphs (6)

Adjacency Matrix — Weighted

- For a weighted adjacency matrix, boolean values are replaced with numbers
 - $\circ~$ i.e. the cost of traversing from one node to another
- Note: That if your weightings are positive floating point values
 may benefit you by making the False values a negative number, i.e. -1, rather than checking for == 0.0f
- Code Representation:

```
aGraph = [
  [-1, 5, -1, -1, -1],
  [5, -1, -1, 7, -1],
  [-1, -1, -1, 4, 8],
  [-1, 7, 4, -1, 3],
  [-1, -1, 8, 3, -1]
]
```

• Tabular Representation:

	Α	В	С	D	E	
А		5				
В	5			7		
С				4	8	
			_			

Representation of Graphs (7)

Adjacency List — Weighted

- For a weighted adjacency lists, connected nodes have an associated weight provided next to them
 - $\circ~$ i.e. a number provided in brackets
- Code Representation:

```
aGraph = {
    "A": [('B',5)],
    "B": [('A',5), ('D',7)],
    "C": [('D',4), ('E',8)],
    "D": [('B',7), ('C',4), ('E',3)],
    "E": [('C',8), ('D',3)]
}
```

• Tabular Representation:

Node	Adjacency List
А	B(5)
В	A(5), D(7)
С	E(4), D(8)
D	B(7), C(4), E(3)
E	C(8), D(3)

Goodbye

<u>7.1</u>

Goodbye (1)

Questions and Support

- Questions? Post them on the **Community Page** on Aula
- Additional Support? Visit the <u>Module Support Page</u>
- Contact Details:
 - Dr Ian Cornelius, <u>ab6459@coventry.ac.uk</u>

