Coventry 5062CEM Programming and Algorithms 2

Graph Theory

Dr Ian Cornelius

Coventry 5062CEM Programming and Algorithms 2

Hello

Coventry 5062CEM Programming and Algorithms 2
University Graph Theory

Hello (1)

Learning Outcomes

1. Understand the concept of graphs and their purpose as a data structure
2. Demonstrate and implement their knowledge of graphs

Coventry 5062CEM Programming and Algorithms 2

Graph Theory

Graph Theory (1)

What are Graphs?

- Graphs are the basis for a large amount of programming
- They are essentially a set of nodes with connections between them
- You may think of them as Lists: The Next Generation
- imagine a linked list, where any element of data can have as many next elements and as many parents as needed

Graph Theory (2)

Use-cases for Graphs

- Graphs can be useful for:

1. Map analysis, route finding, path planning
2. Ranking search results
3. Analysing related data such as social networks
4. Compiler optimisation
5. Constraint satisfaction

- i.e. timetabling

6. Physics simulations

- i.e. games

7. Social connections
8. Decision-making

- i.e. goal-oriented action planning and strategies

Graph Theory (3)

Facebook: The Social Graph

- Draws an edge between you and the people, places and things you interact with online
- Whenever you like something on Facebook, it becomes an edge - This edge is a connection between you and other people, places or things
- Your photos, events and pages are connected with other information

Graph Theory (4)

Formal Terminology of Graphs

- Graphs are a collection of nodes that have links between them
- There are some terminologies you need to remember:
- nodes are called vertices
- links (connections between nodes) are called edges (or sometimes arcs)
- an edge is an incident if it connects to another vertex
- connected vertices are called adjacent or neighbours
- a vertices degree is a number of edges that incident on it

Coventry 5062CEM Programming and Algorithms 2

Types of Graphs

Coventry 5062CEM Programming and Algorithms 2
University Graph Theory

Types of Graphs (1)

- There are many types of graphs:

1. Undirected
2. Directed
3. Vertex Labelled
4. Cyclic
5. Weighted
6. Connected
7. Disconnected
8. Directed Acyclic Graph (DAG)

Coventry 5062CEM Programming and Algorithms 2
University Graph Theory

Types of Graphs (2)

Undirected Graphs

- Edges can be traversed in either direction
- The vertices can be imagined as junctions on a road network
- the edges are a two-way road between junctions
- i.e. you can travel from node A to node B and then travel back from node B to node A

Coventry 5062CEM Programming and Algorithms 2
University Graph Theory

Types of Graphs (3)

Directed Graphs

- Each edge is directional and does not imply the inverse
- The vertices can be imagined as junctions on a road network
- the edges are a one-way roads between junctions
- i.e. we can travel from node a to node c but we cannot travel back to node A

Types of Graphs (4)

Vertex Labelled

- The data used to identify each node is not the only information that is important about that node
- i.e. it may also have a colour assigned to it that affects the algorithm decision or choice
- The nodes can be imagined as roundabouts or slip-roads on a road network
- i.e. a red node is a heavily congested roundabout and should be bypassed

Coventry 5062CEM Programming and Algorithms 2
University Graph Theory

Types of Graphs (5)

Cyclic

- Consists of at least one cycle
- i.e. there is a path that exists from a single node that can lead back to itself
- Imagine our road network again; it is a roundabout where there is a vertex for each junction

Types of Graphs (6)

Weighted

- Parameters along edges or at nodes are interval data and can be summed and/or compared
- This is similar to vertex labelled but more versatile
- Thinking about the road network example, the weight of our $5 \div 5$ graph edges could be according to the speed limit
- it could mean the algorithm would favour faster roads over a slower road in route planning

Coventry 5062CEM Programming and Algorithms 2

Types of Graphs (7)

Connected

- There is an edge between every pair of nodes in a graph

Coventry
University
5raph Theory

Types of Graphs (8)

Disconnected

- There is a node that does not have any connection to a node in the graph
- the red node makes our graph disconnected

和

Types of Graphs (9)

Directed Acyclic Graph (DAG)

- Links in these graphs have a direction and there are no cycles
- It consists of vertices and edges, where each edge is directed from one vertex to another
- they follow the directions of the other nodes and never form a closed loop
- It Can be visualised like a river system heading out to sea
- it may fork and join at parts, but it always does so going downstream
元

Coventry 5062CEM Programming and Algorithms 2

Degrees, In-degrees and Out-degrees

Coventy 5062CEM Programming and Algorithms 2

Degrees, In-degrees and Out-degrees (1)

- Recap: Degrees count the number of edges connected to a node
- Three types of degrees for a graph:

1. degree
2. in-degree
3. out-degree

Coventry 5062CEM Programming and Algorithms 2

Degrees, In-degrees and Out-degrees (2)

Undirected Graphs

- Concerned with only counting the total number of connections for a node
- in this instance, the degree
Vertex
A
B
C
D
E
F

Degrees, In-degrees and Out-degrees (3)

Directed Graphs

- Concerned with counting:
- the total number of connections, known as the degree
- the number of incoming connections, known as the in-degree
- the number of outgoing connections, known as the out-degree

Vertex	Degree	In-Degree
A Out-Degree		
B		
C		
D		

Coventry 5062CEM Programming and Algorithms 2

Representation of Graphs

Representation of Graphs (1)

Mathematical Notation

- The elements of a graph can be represented in different methods:
- vertices with integers (or any unique value)
- edges as a pair of vertices, i.e. (1, 0)
- A graph G will consist of a set of vertices v and a set of edges E
- represented as G = (V, E)
- n and m can be used to represent the number of vertices and edges
- think n for node if you find it difficult to remember which
way around these go
- $G=(V, E)$, where,
- $V=[A, B, C, D, E]$
$0 E=[(A, B),(B, D),(C, D),(C, E),(D, E)]$
- Final form:
${ }^{\circ} G=(\lceil A, B, C, D, E],\lceil(A, B),(B, D),(C, D),(C, E),(D, E)\rceil)$

Coventry 5062CEM Programming and Algorithms 2

Representation of Graphs (2)

Programming Methodology

- When it comes to representing a graph in programming, there are two ways of implementing a graph:

1. Adjacency Matrices
2. Adjacency Lists

Representation of Graphs (3)

Adjacency Matrices

- A two-dimensional matrix of boolean values
- the value of a cell (i, j) is true if the vertices are connected
- Adjacency matrices are symmetrical along the diagonal for undirected graphs
- However, for directed graphs a connection $(1,2)$ does not imply a connection between $(2,1)$
- Adjacency matrix requires $O\left(n{ }^{2}\right)$ space, where n, is the number of vertices
- Code Representation:

```
aGraph = [
    [False, True, False, False, False],
    [True, False, False, True, False],
    [False, False, False, True, True],
    [False, True, True, False, True],
    [False, False, True, True, False]
]
```

- Tabular Representation:

Representation of Graphs (4)

Adjacency List

- Each vertex contains a list of vertices that it is connected to the other
- often stored as a dictionary in Python
- Adjacency lists requires up to $O(n+m)$ space
- where \boldsymbol{n}, is the number of nodes in our graph and \boldsymbol{m}, is the number of edges
- Code Representation:

```
aGraph = {
    "A": ['B'],
    "B": ['A', 'D'],
    "C": ['D', 'E'],
    "D": ['B', 'C', 'E'],
    "E": ['C', 'D']
}
```

- Tabular Representation:

Vertex	Adja
A	B
B	A, D
C	E, D

Representation of Graphs (5)

Recap: Weighted Graphs

- It is sometimes useful to store a number with each edge
- this will change the way the graphs are represented
- The adjacency matrix is now numerical instead of boolean
- Unconnected nodes can be given a default value, such as infinity

(\propto) for shortest path finding
- The adjacency list must sture edges as pairs, including the connection and the weight
- For example, a tuple could easily be represented using a simple struct with two variables
- int neighbour and float weighting
- i.e. (0, 5.0)

Representation of Graphs (6)

Adjacency Matrix - Weighted

- For a weighted adjacency matrix, boolean values are replaced with numbers
- i.e. the cost of traversing from one node to another
- Note: That if your weightings are positive floating point values
- may benefit you by making the False values a negative number, i.e. -1 , rather than checking for $==0.0 f$
- Code Representation:

```
aGraph = [
    [-1, 5, -1, -1, -1],
    [5, -1, -1, 7, -1],
    [-1, -1, -1, 4, 8],
    [-1, 7, 4, -1, 3],
    [-1, -1, 8, 3, -1]
]
```

- Tabular Representation:

	A	B	C	D	E
A		5			
B	5			7	
C				4	8

Representation of Graphs (7)

Adjacency List - Weighted

- For a weighted adjacency lists, connected nodes have an associated weight provided next to them
- i.e. a number provided in brackets
$4 \quad 8$
- Code Representation:

3

```
aGraph = {
    "A": [('B',5)],
    "B": [('A',5), ('D',7)],
    "C": [('D',4), ('E',8)],
    "D": [('B',7), ('C',4), ('E',3)],
    "E": [('C',8), ('D',3)]
}
```

- Tabular Representation:

Node	Adjacency List
A	$B(5)$
B	$A(5), D(7)$
C	$E(4), D(8)$
D	$B(7), C(4), E(3)$
E	$C(8), D(3)$

Coventry 5062CEM Programming and Algorithms 2

Goodbye

Coventry 5062CEM Programming and Algorithms 2
University Graph Theory

Goodbye (1)

Questions and Support

- Questions? Post them on the Community Page on Aula
- Additional Support? Visit the Module Support Page
- Contact Details:
- Dr Ian Cornelius, ab6459@coventry.ac.uk

