
 5062CEM Programming and Algorithms 2
Graph Theory



Graph Theory
Dr Ian Cornelius

1

 5062CEM Programming and Algorithms 2
Graph Theory



Hello

2 . 1

 5062CEM Programming and Algorithms 2
Graph Theory



Hello (1)
Learning Outcomes
1. Understand the concept of graphs and their purpose as a data structure
2. Demonstrate and implement their knowledge of graphs

2 . 2

 5062CEM Programming and Algorithms 2
Graph Theory



Graph Theory

3 . 1

 5062CEM Programming and Algorithms 2
Graph Theory



Graph Theory (1)
What are Graphs?

Graphs are the basis for a large amount of programming
They are essentially a set of nodes with connections between
them
You may think of them as Lists: The Next Generation

imagine a linked list, where any element of data can have
as many next elements and as many parents as needed

A D

B

C E

3 . 2

 5062CEM Programming and Algorithms 2
Graph Theory



Graph Theory (2)
Use-cases for Graphs

Graphs can be useful for:
1. Map analysis, route finding, path planning
2. Ranking search results
3. Analysing related data such as social networks
4. Compiler optimisation
5. Constraint satisfaction

i.e. timetabling
6. Physics simulations

i.e. games
7. Social connections
8. Decision-making

i.e. goal-oriented action planning and strategies

3 . 3

 5062CEM Programming and Algorithms 2
Graph Theory



Graph Theory (3)
Facebook: The Social Graph

Draws an edge between you and the people, places and things
you interact with online
Whenever you like something on Facebook, it becomes an edge

This edge is a connection between you and other people,
places or things

Your photos, events and pages are connected with other
information

3 . 4

 5062CEM Programming and Algorithms 2
Graph Theory



Graph Theory (4)
Formal Terminology of Graphs

Graphs are a collection of nodes that have links between them
There are some terminologies you need to remember:

nodes are called vertices
links (connections between nodes) are called edges (or
sometimes arcs)

an edge is an incident if it connects to another
vertex

connected vertices are called adjacent or neighbours
a vertices degree is a number of edges that incident on it

A D

B

C E

edge/arc

3 . 5

 5062CEM Programming and Algorithms 2
Graph Theory



Types of Graphs

4 . 1

 5062CEM Programming and Algorithms 2
Graph Theory



Types of Graphs (1)
There are many types of graphs:
1. Undirected
2. Directed
3. Vertex Labelled
4. Cyclic
5. Weighted
6. Connected
7. Disconnected
8. Directed Acyclic Graph (DAG)

4 . 2

 5062CEM Programming and Algorithms 2
Graph Theory



Types of Graphs (2)
Undirected Graphs

Edges can be traversed in either direction
The vertices can be imagined as junctions on a road network

the edges are a two-way road between junctions
i.e. you can travel from node A to node B and then travel
back from node B to node A

A

B

C D

4 . 3

 5062CEM Programming and Algorithms 2
Graph Theory



Types of Graphs (3)
Directed Graphs

Each edge is directional and does not imply the inverse
The vertices can be imagined as junctions on a road network

the edges are a one-way roads between junctions
i.e. we can travel from node A to node C but we cannot
travel back to node A

A

B

C D

4 . 4

 5062CEM Programming and Algorithms 2
Graph Theory



Types of Graphs (4)
Vertex Labelled

The data used to identify each node is not the only information
that is important about that node

i.e. it may also have a colour assigned to it that affects the
algorithm decision or choice

The nodes can be imagined as roundabouts or slip-roads on a
road network

i.e. a red node is a heavily congested roundabout and
should be bypassed

A

B

C

D

E

F

4 . 5

 5062CEM Programming and Algorithms 2
Graph Theory



Types of Graphs (5)
Cyclic

Consists of at least one cycle
i.e. there is a path that exists from a single node that can
lead back to itself

Imagine our road network again; it is a roundabout where there
is a vertex for each junction

A B

C

D

E F

4 . 6

 5062CEM Programming and Algorithms 2
Graph Theory



Types of Graphs (6)
Weighted

Parameters along edges or at nodes are interval data and can be
summed and/or compared
This is similar to vertex labelled but more versatile
Thinking about the road network example, the weight of our
graph edges could be according to the speed limit

it could mean the algorithm would favour faster roads
over a slower road in route planning

A B

C

D

E2
5

14
4

34
5

4 . 7

 5062CEM Programming and Algorithms 2
Graph Theory



Types of Graphs (7)
Connected

There is an edge between every pair of nodes in a graph

A

B

C

D

E

F

4 . 8

 5062CEM Programming and Algorithms 2
Graph Theory



Types of Graphs (8)
Disconnected

There is a node that does not have any connection to a node in
the graph

the red node makes our graph disconnected
A

B

C

D

E

F

Z

4 . 9

 5062CEM Programming and Algorithms 2
Graph Theory



Types of Graphs (9)
Directed Acyclic Graph (DAG)

Links in these graphs have a direction and there are no cycles
It consists of vertices and edges, where each edge is directed
from one vertex to another

they follow the directions of the other nodes and never
form a closed loop

It Can be visualised like a river system heading out to sea
it may fork and join at parts, but it always does so going
downstream

A

B

C

D

E F

G

H

4 . 10

 5062CEM Programming and Algorithms 2
Graph Theory



Degrees, In-degrees and Out-degrees

5 . 1

 5062CEM Programming and Algorithms 2
Graph Theory



Degrees, In-degrees and Out-degrees (1)
Recap: Degrees count the number of edges connected to a node
Three types of degrees for a graph:
1. degree
2. in-degree
3. out-degree

5 . 2

 5062CEM Programming and Algorithms 2
Graph Theory



Degrees, In-degrees and Out-degrees (2)
Undirected Graphs

Concerned with only counting the total number of connections for a node
in this instance, the degree

Vertex Degree

A
B
C
D
E
F

Populate

A

B

C

D

E

F

5 . 3

 5062CEM Programming and Algorithms 2
Graph Theory



Degrees, In-degrees and Out-degrees (3)
Directed Graphs

Concerned with counting:
the total number of connections, known as the degree
the number of incoming connections, known as the in-degree
the number of outgoing connections, known as the out-degree

Vertex Degree In-Degree Out-Degree

A
B
C
D

Populate

A B

C D

5 . 4

 5062CEM Programming and Algorithms 2
Graph Theory



Representation of Graphs

6 . 1

 5062CEM Programming and Algorithms 2
Graph Theory



Representation of Graphs (1)
Mathematical Notation

The elements of a graph can be represented in different
methods:

vertices with integers (or any unique value)
edges as a pair of vertices, i.e. (1, 0)

A graph G will consist of a set of vertices V and a set of edges E
represented as G = (V, E)

n and m can be used to represent the number of vertices and
edges

think n for node if you find it difficult to remember which
way around these go

G = (V, E), where,

V = [A, B, C, D, E]

E = [(A,B), (B,D), (C,D), (C,E), (D,E)]

Final form:

G = ([A,B,C,D,E], [(A,B), (B,D), (C,D), (C,E), (D,E)])

A

B

C

D

E

6 . 2

 5062CEM Programming and Algorithms 2
Graph Theory



Representation of Graphs (2)
Programming Methodology

When it comes to representing a graph in programming, there are two ways of implementing a graph:
1. Adjacency Matrices
2. Adjacency Lists

6 . 3

 5062CEM Programming and Algorithms 2
Graph Theory



Representation of Graphs (3)
Adjacency Matrices

A two-dimensional matrix of boolean values
the value of a cell (i, j) is true if the vertices are
connected

Adjacency matrices are symmetrical along the diagonal for
undirected graphs
However, for directed graphs a connection (1, 2) does not imply
a connection between (2, 1)

Adjacency matrix requires space, where is the
number of vertices
Code Representation:

aGraph aGraph == [[

[[FalseFalse,, TrueTrue,, FalseFalse,, FalseFalse,, FalseFalse]],,

[[TrueTrue,, FalseFalse,, FalseFalse,, TrueTrue,, FalseFalse]],,

[[FalseFalse,, FalseFalse,, FalseFalse,, TrueTrue,, TrueTrue]],,

[[FalseFalse,, TrueTrue,, TrueTrue,, FalseFalse,, TrueTrue]],,

[[FalseFalse,, FalseFalse,, TrueTrue,, TrueTrue,, FalseFalse]]

]]

Tabular Representation:

 A B C D E

A T

O()n2 n

A

B

C

D

E

6 . 4

 5062CEM Programming and Algorithms 2
Graph Theory



Representation of Graphs (4)
Adjacency List

Each vertex contains a list of vertices that it is connected to the
other

often stored as a dictionary in Python
Adjacency lists requires up to space

where is the number of nodes in our graph and is
the number of edges

Code Representation:

aGraph aGraph == {{

"A""A":: [['B''B']],,

"B""B":: [['A''A',, 'D''D']],,

"C""C":: [['D''D',, 'E''E']],,

"D""D":: [['B''B',, 'C''C',, 'E''E']],,

"E""E":: [['C''C',, 'D''D']]

}}

Tabular Representation:

Vertex Adjacency List

A B
B A, D
C E, D

O(n + m)
n m

A

B

C

D

E

6 . 5

 5062CEM Programming and Algorithms 2
Graph Theory



Representation of Graphs (5)
Recap: Weighted Graphs

It is sometimes useful to store a number with each edge
this will change the way the graphs are represented

The adjacency matrix is now numerical instead of boolean
Unconnected nodes can be given a default value, such as infinity
() for shortest path finding
The adjacency list must sture edges as pairs, including the
connection and the weight

For example, a tuple could easily be represented using a
simple struct with two variables
int neighbour and float weighting
i.e. (0, 5.0)

∞

A B

C

D E5 7
84

3

6 . 6

 5062CEM Programming and Algorithms 2
Graph Theory



Representation of Graphs (6)
Adjacency Matrix — Weighted

For a weighted adjacency matrix, boolean values are replaced
with numbers

i.e. the cost of traversing from one node to another
Note: That if your weightings are positive floating point values

may benefit you by making the False values a negative
number, i.e. -1, rather than checking for == 0.0f

Code Representation:

aGraph aGraph == [[

[[--11,, 55,, --11,, --11,, --11]],,

[[55,, --11,, --11,, 77,, --11]],,

[[--11,, --11,, --11,, 44,, 88]],,

[[--11,, 77,, 44,, --11,, 33]],,

[[--11,, --11,, 88,, 33,, --11]]

]]

Tabular Representation:

 A B C D E

A 5
B 5 7
C 4 8
D 7 4 3

A B

C

D E5 7
84

3

6 . 7

 5062CEM Programming and Algorithms 2
Graph Theory



Representation of Graphs (7)
Adjacency List — Weighted

For a weighted adjacency lists, connected nodes have an
associated weight provided next to them

i.e. a number provided in brackets
Code Representation:

aGraph aGraph == {{

"A""A":: [[(('B''B',,55))]],,

"B""B":: [[(('A''A',,55)),, (('D''D',,77))]],,

"C""C":: [[(('D''D',,44)),, (('E''E',,88))]],,

"D""D":: [[(('B''B',,77)),, (('C''C',,44)),, (('E''E',,33))]],,

"E""E":: [[(('C''C',,88)),, (('D''D',,33))]]

}}

Tabular Representation:

Node Adjacency List

A B(5)
B A(5), D(7)
C E(4), D(8)
D B(7), C(4), E(3)
E C(8), D(3)

A B

C

D E5 7
84

3

6 . 8

 5062CEM Programming and Algorithms 2
Graph Theory



Goodbye

7 . 1

 5062CEM Programming and Algorithms 2
Graph Theory



Goodbye (1)
Questions and Support

Questions? Post them on the Community Page on Aula
Additional Support? Visit the
Contact Details:

Dr Ian Cornelius,

Module Support Page

ab6459@coventry.ac.uk

7 . 2

https://github.coventry.ac.uk/pages/CUEH/5062CEM/module/support/
mailto:ab6459@coventry.ac.uk

