
 5062CEM Programming and Algorithms 2
Threading in Python



Threading in Python
Dr Ian Cornelius

1

 5062CEM Programming and Algorithms 2
Threading in Python



Hello

2 . 1

 5062CEM Programming and Algorithms 2
Threading in Python



Hello (1)
Learning Outcomes
1. Understand the concept of threading in Python
2. Demonstrate their knowledge on the use of threading in Python

2 . 2

 5062CEM Programming and Algorithms 2
Threading in Python



Threading

3 . 1

 5062CEM Programming and Algorithms 2
Threading in Python



Threading (1)
A thread refers to a basic unit of CPU utilisation

a separate process that has its own instructions and data
it may also represent a process that is part of a parallel program

although it may also represent an independent program
They share their code, data and other operating system resources with other threads belonging to the same process
A traditional process will have a single thread of control

if a process has multiple threads of control, then it has the ability to perform more than one task at a time

3 . 2

 5062CEM Programming and Algorithms 2
Threading in Python



Threading (2)
Benefits of Multithreading
1. Responsiveness

Interactive applications can continue to run, even if part of its blocked; increasing the responsiveness to the user
Multithreaded web browsers enable you to continue browsing the internet on one tab, whilst another tab has become unresponsive

2. Resource Sharing
Threads share memory and resources of the process they belong to
Benefits of sharing code and data
allows an application to have several threads of activity in the same address space

3. Economy
Allocation of memory and other resources for process creation is costly
Threads share resources of a process they belong to

therefore, providing a cost-effective resource
4. Multiprocessor Architecture

Threads may run in parallel on different processors, dependent upon the multiprocessor architecture
Single threaded processes may only run on one CPU, no matter how many CPUs may be available
Multithreaded processes on a multi-CPU machine can increase concurrency

3 . 3

 5062CEM Programming and Algorithms 2
Threading in Python



Threading (3)
Difference Between Process and Thread i

In multithreading, a process and thread are two closely related terms
they have the same goal to make a computer run tasks simultaneously

A process can contain one or more threads, whilst a thread cannot contain a process

3 . 4

 5062CEM Programming and Algorithms 2
Threading in Python



Threading (4)
Difference Between Process and Thread ii
Process

An execution of a script/program to perform a task
The operating system will assist in the creation, scheduling and termination of the processes
Spawned processes from the main process are known as child processes
The properties of a process are:

creating each process requires separate system calls for each process
an isolated execution entity and does not share data or information
requires more system calls to manage

3 . 5

 5062CEM Programming and Algorithms 2
Threading in Python



Threading (5)
Difference Between Process and Thread iii
Thread

An execution of a segment that is part of the process
a process can consist of multiple threads
all threads will be executed at the same time

Considered to be lightweight and managed by a scheduler
The properties of a thread are:

a single system call can create multiple threads
threads can share data and information between themselves
management of threads consumes fewer (or none) system calls

3 . 6

 5062CEM Programming and Algorithms 2
Threading in Python



Threading (6)
Advantages and Disadvantages of Threading i
Advantages

Speed
Multithreading can improve the speed of computation
Each core (or processor) can handle separate threads concurrently.

Responsiveness
Applications can remain responsive as one thread waits for the input
Another thread can run the GUI at the same time

Variable Accessibility
All threads of a particular process can access global variables
If a change is made to a global variable, then it is visible in the other threads too

Resource Utilisation
Running several threads in each application utilises the resources of a CPU better
Idle time of a CPU decreases

Data Sharing
No requirement for extra space to be created for each thread
Threads within an application can share the same data

3 . 7

 5062CEM Programming and Algorithms 2
Threading in Python



Threading (7)
Advantages and Disadvantages of Threading ii
Disadvantages

Suitability
Multithreading is not suitable for single processor systems
Difficult to achieve performance gains compared to a multiprocessor system

Security
As threads can share the same data, there is an issue with security
Any unknown thread may make changes to the data

Complex
Multithreading can increase the complexity of the application and debugging

Possible Deadlock
There is a possibility of leading to a deadlock state
Deadlock is a situation where a set of processes are blocked

this is due to each process is holding a resource and is awaiting another acquired by a different process
Synchronisation

Avoiding mutual exclusion is achieved by synchronisation
Leads to more memory and CPU utilisation

3 . 8

 5062CEM Programming and Algorithms 2
Threading in Python



Multithreading Models

4 . 1

 5062CEM Programming and Algorithms 2
Threading in Python



Multithreading Models (1)
There are two types of threads:
1. User Level
2. Kernel Level

4 . 2

 5062CEM Programming and Algorithms 2
Threading in Python



Multithreading Models (2)
User Level Threads

These are threads managed by the user
The thread management kernel is not aware of the existence of these threads
The library used for managing threads can be used to:

create and delete threads
pass messages and data between threads
schedule thread execution
save and restore thread contexts

Advantages:
Switching threads does not require kernel mode privileges
User level threads can run on any operating system
These types of threads are fast to create and manage

Disadvantages:
For a typical operating system, most system calls are blocked
A multithreaded application cannot take advantage of multiprocessing

4 . 3

 5062CEM Programming and Algorithms 2
Threading in Python



Multithreading Models (3)
Kernel Level Threads

These are threads managed by the operating system
there is no thread management code in the application

Any application can be programmed to be multithreaded
All the threads in the application are supported within a single process
The kernel maintains context information for the process as a whole

along with the individual threads within the process
Scheduling by the kernel is done on a thread basis

performs the thread creation, scheduling and management in the kernel space
Advantages:

Simultaneous scheduling of multiple threads from the same process on multiple processes
If a single thread is blocked, the kernel is able to schedule another thread for the same process

Disadvantages:
Generally slower to create and manage compared to user-level threads
Transfer of control from one thread to another within the same process requires a mode switch

4 . 4

 5062CEM Programming and Algorithms 2
Threading in Python



Multithreading Models (4)
There are three methods of modeling a multithreaded application:
1. Many-to-One
2. Many-to-Many
3. One-to-One

4 . 5

 5062CEM Programming and Algorithms 2
Threading in Python



Multithreading Models (5)
Many-to-One

Maps many user-level threads to one kernel thread
Management of the thread is done by the thread library in the
user-space
Only a single thread can access the kernel at a time

therefore, multiple threads are unable to run in parallel on
multiprocessors K

2 3 4 5

4 . 6

 5062CEM Programming and Algorithms 2
Threading in Python



Multithreading Models (6)
Many-to-Many

Joins many user-level threads to a smaller or equal number of
kernel threads
The number of kernel threads may be specific to a particular
application or machine
Developers are able to create as many user threads as necessary

the corresponding kernel threads can run in parallel on
multiprocessor machines

K

1

K K

2 3 4

4 . 7

 5062CEM Programming and Algorithms 2
Threading in Python



Multithreading Models (7)
One-to-One

Maps each user-level thread to a kernel thread
Provides more concurrency than the many-to-one model

allows multiple threads to run in parallel on
multiprocessors

Creating a user thread requires creating the corresponding
kernel thread
The overhead required for creating a kernel thread can be a
burden on the performance of the application

K

1

K

1

K

1

K

1

4 . 8

 5062CEM Programming and Algorithms 2
Threading in Python



Multithreading in Python

5 . 1

 5062CEM Programming and Algorithms 2
Threading in Python



Multithreading in Python (1)
Python has two libraries available for multithreading applications:
1. _thread: each thread is a function
2. threading: each thread is an object
For the purpose of this module, we shall be focusing upon the threading module

_thread is considered to be deprecated

5 . 2

 5062CEM Programming and Algorithms 2
Threading in Python



Multithreading in Python (2)
Creating a Threaded Application

Implement threads in an object-oriented methodology, as such
providing high-level support
To implement a thread, the Thread class is used

e.g. from theading import Thread
We can then create an instance of the Thread class
Specify the function to run in the target argument
Execute the thread using the start function

fromfrom threading threading importimport Thread Thread

defdef hellohello(())::

printprint(("Hello 5062CEM!""Hello 5062CEM!"))

threadExample1 threadExample1 == Thread Thread((targettarget==hellohello))

threadExample1.start() -> Hello 5062CEM!

5 . 3

 5062CEM Programming and Algorithms 2
Threading in Python



Multithreading in Python (3)
Running a Function with an Argument

Create an instance of the Thread class
Specify the function to run in the target argument
Specify the arguments to pass th`rough in theargs` argument

provide the arguments as list
Execute the thread using the start function

fromfrom threading threading importimport Thread Thread

defdef hellohello((namename))::

printprint((f"Hello f"Hello {{namename}}, and welcome to 5062CEM!", and welcome to 5062CEM!"))

threadExample1 threadExample1 == Thread Thread((targettarget==hellohello,, args args==(([['Ian Cornelius''Ian Cornelius']]))))

threadExample1.start() -> Hello Ian Cornelius, and welcome to 5062CEM!

5 . 4

 5062CEM Programming and Algorithms 2
Threading in Python



Multithreading in Python (4)
Running a Function with Multiple Arguments

Create an instance of the Thread class
Specify the function to run in the target argument
Specify the arguments to pass through in the args argument

provide the arguments as list
Execute the thread using the start function

fromfrom threading threading importimport Thread Thread

defdef hellohello((namename,, module module))::

printprint((f"Hello f"Hello {{namename}}, and welcome to , and welcome to {{modulemodule}}!"!"))

threadExample1 threadExample1 == Thread Thread((targettarget==hellohello,, args args==[['Ian Cornelius''Ian Cornelius',, '5062CEM''5062CEM']]

threadExample1.start() -> Hello Ian Cornelius, and welcome to 5062CEM!

5 . 5

 5062CEM Programming and Algorithms 2
Threading in Python



Multithreading in Python (5)
Creating a Custom Thread Class

Extend an instance of the Thread class
Override the run function
Provide variable names with the self keyword
Return the string to the self.data variable

fromfrom threading threading importimport Thread Thread

classclass MyThreadMyThread((ThreadThread))::

defdef __init____init__((selfself,, name name,, module module))::

 Thread Thread..__init____init__((selfself))

 self self..name name == name name

 self self..module module == module module

 self self..data data == NoneNone

defdef runrun((selfself))::

 self self..data data == f"Hello f"Hello {{selfself..namename}}, and welcome to , and welcome to {{selfself..modumodu

customThreadExample1 customThreadExample1 == MyThread MyThread(("Ian Cornelius ""Ian Cornelius ",, "5062CEM""5062CEM"))

customThreadExample2 customThreadExample2 == MyThread MyThread(("Terry Richards""Terry Richards",, "5069CEM""5069CEM"))

customThreadExample1.data -> Hello Ian Cornelius , and welcome to 5062CEM!

customThreadExample2.data -> Hello Terry Richards, and welcome to 5069CEM!

5 . 6

 5062CEM Programming and Algorithms 2
Threading in Python



Multithreading in Python (6)
Extending the Custom Thread Class

Extend an instance of the Thread class
Override the run function
Provide variable names with the self keyword

add a new variable called sleep
Return the string to the self.data variable

fromfrom threading threading importimport Thread Thread

classclass MyThreadMyThread((ThreadThread))::

defdef __init____init__((selfself,, name name,, module module,, sleep sleep))::

 Thread Thread..__init____init__((selfself))

 self self..name name == name name

 self self..module module == module module

 self self..sleep sleep == sleep sleep

 self self..data data == NoneNone

defdef runrun((selfself))::

fromfrom time time importimport sleep sleep

 sleep sleep((selfself..sleepsleep))

 self self..data data == f"Hello f"Hello {{selfself..namename}}, and welcome to , and welcome to {{selfself..modumodu

customThreadExample1customThreadExample1 == MyThreadMyThread(("Ian Cornelius ""Ian Cornelius " "5062CEM""5062CEM" 1010))

customThreadExample1.data -> Hello Ian Cornelius , and welcome to 5062CEM!

customThreadExample2.data -> Hello Terry Richards, and welcome to 5069CEM!

5 . 7

 5062CEM Programming and Algorithms 2
Threading in Python



Goodbye

6 . 1

 5062CEM Programming and Algorithms 2
Threading in Python



Goodbye (1)
Questions and Support

Questions? Post them on the Community Page on Aula
Additional Support? Visit the
Contact Details:

Dr Ian Cornelius,

Module Support Page

ab6459@coventry.ac.uk

6 . 2

https://github.coventry.ac.uk/pages/CUEH/5062CEM/module/support/
mailto:ab6459@coventry.ac.uk

