
 5062CEM Programming and Algorithms 2
Advanced Data Structures



Advanced Data Structures
Dr Ian Cornelius

1

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Hello

2 . 1

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Hello (1)
Learning Outcomes
1. Understand the concept of trees and linked-lists and their function as a data structure
2. Practice and implement the use of trees and linked-lists in work undertaken for lab activities

2 . 2

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Trees

3 . 1

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Trees (1)
What are Trees?

Trees are a connected, undirected graph with no cycles (more on
this later)
Root of a tree is the topmost node, or the start node for
traversal

if a tree has a root node, it is called a rooted tree
Branches of a tree is the path from the root to an end-point; the
end-point is known as a leaf
Height of a tree is equal to the number of edges

that is those that connect the root node to the leaf node
that is the furthest away

The number of edges () of a tree is equal to the number of
nodes () minus one

E

N

E = N − 1

1

2 3 4

5 6 7 8 9 10

3 . 2

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Tress (2)
Types of Trees

There are various different types of trees:
1. Balanced and Unbalanced Trees
2. Rooted Trees
3. Binary Search Trees

3 . 3

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Trees (3)
Balanced and Unbalanced Trees

Trees can be either balanced or unbalanced:
for a balanced tree, every leaf is around the same
distance away from the root as any other leaf
for an unbalanced tree, one or more leaves are much
further away from the root than any other leaf

A balanced tree does not need to have the same number of
nodes in the left and right subtrees

each branch (from root to leaf) must have the same
height

1

2 3 4

5 6 7 8 9 10

11

3 . 4

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Trees (4)
Rooted Trees

Rooted trees are trees with one node that has been designated
as the root
The root node is commonly situated at the start (above all the
other nodes)

branches descend to the leaf nodes
Nodes are connected in a parent-child relationship
A parent node is a node that comes directly before another
adjacent node

the adjacent node is considered to be its child
Nodes can have any number of children
A leaf is a node that does not consist of any children

3

9 20

15 7

3 . 5

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Trees (5)
Binary Search Trees (BST)

A binary tree is a tree that is rooted and every node has at most
two children
A binary search tree is a special implementation of a rooted
binary tree

ordered on a way to optimise searching
Nodes of this tree type are ordered ascending (low to high):

the nodes on the left subtree have values that are lower
than the root
the nodes on the right subtree have values that are higher
than the root

F

B G

A D H I

C E

3 . 6

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Trees (6)
Methodology of a BST

Click Start to proceed!

Start

8

3 10

1 6 18

75 12

3 . 7

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Trees (7)
Efficiency of a BST

Time complexity is dependent upon the balance of the tree
A balanced tree in its:

best case will have a time complexity of

worst case will be , where is the number of nodes in the tree
An unbalanced tree in its:

best case will have a time complexity of

worst case will be , where is the number of nodes in the tree

O(1)
O(logn) n

O(1)
O(n) n

3 . 8

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Trees (8)
Traversing a BST

Processing the data of a tree often requires traversing
traversing is concerned with systematically visiting every node

A tree can be traversed left to right, or right to left; depending on the application
Traversing in a particular order will specify a point in the traversal at which the node contents are processed

processed in this instance is where we print the value of the nodes
When a node content has been processed, it is classified as visited

each node can be visited several times during traversal
it is only on one of the visits the nodes contents are processed

There are three common algorithms for tree traversal:
1. Pre-order
2. Post-order
3. In-order

3 . 9

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Trees (9)
Traversing a BST: Pre-Order

Click Start to proceed!

Start

8

3 10

1 6 18

75 12

3 . 10

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Trees (10)
Traversing a BST: Post-Order

Click Start to proceed!

Start

8

3 10

1 6 18

75 12

3 . 11

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Trees (11)
Traversing a BST: In-Order

Click Start to proceed!

Start

8

3 10

1 6 18

75 12

3 . 12

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Linked Lists

4 . 1

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Linked Lists (1)
What are Linked Lists?

Linked Lists are an ordered collection of objects
they are referred to as a linear data structure

They differ from lists in the manner of how they store elements in the memory
A normal list in Python will use a contiguous memory block

this will store the data element itself, and solely the data element
Linked Lists store references to the next node

as well as the data element itself
note, reference refers to a memory address in this instance

Variety type of linked lists, such as:
singly
doubly
circular

4 . 2

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Linked Lists (2)
Structure of a Linked List

Each element of a linked list is referred to as a node
Every node has two different fields:
1. data: contains the value that is stored in the node
2. next: contains the reference to the next node on the list
The first node is referred to as the head

is used as the starting point for any iteration through the
list

The last node of the list must have its next reference pointing to
None

this will determine the end of the list

Node Data 

4 . 3

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Linked Lists (3)
Queues and Stacks

These differ in the process of retrieving the elements
Queues will use a first-in and first-out approach, known as FIFO
Stacks use a last-in and fist-out approach, known as LIFO

4 . 4

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Linked Lists (4)
Queues (FIFO)

Queues consist of two references to the nodes in a list
head: points to a node in the list which is the top/first node
tail: points to a node in the list which is the last node

The first node inserted into the list will be the first one to be retrieved
Appending new elements to the list goes on the rear (the end)
Retrieving elements will be taken from the front of the queue

4 . 5

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Linked Lists (5)
Queue Walkthrough

Click Start to proceed! None

Start

4 . 6

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Linked Lists (6)
Stacks (LIFO)

Stacks consist of a single reference to the nodes in a list
top: points to a node in the list which is the first node

The last node inserted into the list will be the first one to be retrieved
Appending new elements to the list goes on the top (the start)
Retrieving elements will also be taken from the front of the queue

4 . 7

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Linked Lists (7)
Stack Walkthrough

Click Start to proceed! None

Start

4 . 8

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Linked Lists (8)
Retrieving Elements

Accessing a particular element is different for a list compared to a linked list

lists can be performed in constant time, , when knowing which element you want to access

linked lists take longer, and is performed in
required to traverse the whole list to find the element

Searching for a specific element in either is dependent upon the size of the list

therefore, the time complexity is
you are required to iterate through the entire list to find the element

O(1)
O(n)

O(n)

4 . 9

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Linked Lists (9)
Inserting Elements

Inserting elements to a list can be done using:
prepend() - insert an element at the beginning of a list
append() - insert an element at the end of a list

Prepending or appending elements at the beginning or end of a list is done in constant time

4 . 10

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Linked Lists (10)
Removing Elements

Removing elements from a list can be done using either:
remove() - removes an element from the beginning of a list
pop() - removes an element from the end of a list

4 . 11

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Linked Lists (11)
Time Complexity

Linked lists are always constant in their time complexity when it comes to inserting and deleting elements
They have a performance advantage when implementing a queue

elements inserted and removed at the beginning of a list
However, linked lists have the same performance when implementing a stack

elements are inserted and removed at the end of the list

4 . 12

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Goodbye

5 . 1

 5062CEM Programming and Algorithms 2
Advanced Data Structures



Goodbye (1)
Questions and Support

Questions? Post them on the Community Page on Aula
Additional Support? Visit the
Contact Details:

Dr Ian Cornelius,

Module Support Page

ab6459@coventry.ac.uk

5 . 2

https://github.coventry.ac.uk/pages/CUEH/5062CEM/module/support/
mailto:ab6459@coventry.ac.uk

