Soventry 5062CEM Programming and Algorithms 2
niversl Advanced Data Structures

Advanced Data Structures
Dr Ian Cornelius

Soventry 5062CEM Programming and Algorithms 2

IVEI’SI Advanced Data Structures

Hello

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Hello (1)

Learning Outcomes

1. Understand the concept of trees and linked-lists and their function as a data structure
2. Practice and implement the use of trees and linked-lists in work undertaken for lab activities

Soventry 5062CEM Programming and Algorithms 2

IVEI’SI Advanced Data Structures

Trees

Soventry 5062CEM Programming and Algorithms 2

NIvVersl Advanced Data Structures

Trees (1)

What are Trees?

Trees are a connected, undirected graph with no cycles (more on
this later)

Root of a tree is the topmost node, or the start node for
traversal

o if a tree has a root node, it is called a rooted tree

Branches of a tree is the path from the root to an end-point; the

end-point is known as a leaf

Height of a tree is equal to the number of edges

o thatis those that connect the root node to the leaf node
that is the furthest away

The number of edges (F)) of atreeis equal to the number of
nodes (/\]) minus one

cE=N—1

10

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Tress (2)
Types of Trees

e There are various different types of trees:
1. Balanced and Unbalanced Trees
2. Rooted Trees
3. Binary Search Trees

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Trees (3)

Balanced and Unbalanced Trees

e Trees can be either balanced or unbalanced:
o for a balanced tree, every leaf is around the same :
distance away from the root as any other leaf
o for an unbalanced tree, one or more leaves are much : : 4
further away from the root than any other leaf

e A balanced tree does not need to have the same number of
nodes in the left and right subtrees

o each branch (from root to leaf) must have the same
height

11

Soventry 5062CEM Programming and Algorithms 2

NIvVersl Advanced Data Structures

Trees (4)

Rooted Trees

e Rooted trees are trees with one node that has been designated

as the root
e The root node is commonly situated at the start (above all the

other nodes)
o branches descend to the leaf nodes
 Nodes are connected in a parent-child relationship
e A parent node is a node that comes directly before another
adjacent node
o the adjacent node is considered to be its child
e Nodes can have any number of children
e Aleafis a node that does not consist of any children

15

20

Soventry 5062CEM Programming and Algorithms 2 C
niversl Advanced Data Structures

Trees (5)
Binary Search Trees (BST)

e Abinary treeis a tree that is rooted and every node has at most
two children

e A binary search tree is a special implementation of a rooted
binary tree
o ordered on a way to optimise searching

e Nodes of this tree type are ordered ascending (low to high):
o the nodes on the left subtree have values that are lower

than the root

o the nodes on the right subtree have values that are higher
than the root

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Trees (6)
Methodology of a BST
e Click Start to proceed!

Soventry 5062CEM Programming and Algorithms 2
niversl Advanced Data Structures

Trees (7)
Efficiency of a BST

e Time complexity is dependent upon the balance of the tree
e Abalanced treein its:

o best case will have a time complexity of O(]_)

o worst case will be O(logn) , where 7 is the number of nodes in the tree
e An unbalanced tree in its:

o best case will have a time complexity of O(]_)

o worst case will be O(fn) , where 7 is the number of nodes in the tree

Ventrv 5062CEM Programming and Algorithms 2
|Ver5| Advanced Data Structures

Trees (8)

Traversing a BST

e Processing the data of a tree often requires traversing

o traversing is concerned with systematically visiting every node
e Atree can be traversed left to right, or right to left; depending on the application
e Traversing in a particular order will specify a point in the traversal at which the node contents are processed

o processed in this instance is where we print the value of the nodes
e When a node content has been processed, it is classified as visited
o each node can be visited several times during traversal

o itis only on one of the visits the nodes contents are processed
e There are three common algorithms for tree traversal:

1. Pre-order
2. Post-order
3. In-order

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Trees (9)
Traversing a BST: Pre-Order
e Click Start to proceed!

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Trees (10)
Traversing a BST: Post-Order
e Click Start to proceed!

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Trees (11)

Traversing a BST: In-Order
e Click Start to proceed!

Soventry 5062CEM Programming and Algorithms 2

IVEI’SI Advanced Data Structures

Linked Lists

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Linked Lists (1)
What are Linked Lists?

e Linked Lists are an ordered collection of objects

o they are referred to as a linear data structure
They differ from lists in the manner of how they store elements in the memory

e A normal list in Python will use a contiguous memory block

o this will store the data element itself, and solely the data element
Linked Lists store references to the next node

o as well as the data element itself

o note, reference refers to a memory address in this instance
Variety type of linked lists, such as:

o singly
o doubly
o circular

vent 5062CEM Programming and Algorithms 2 C
Niversli Advanced Data Structures

Linked Lists (2)
Structure of a Linked List

e Each element of a linked list is referred to as a node
Node Data —>

e Every node has two different fields:

1. data: contains the value that is stored in the node

2. next: contains the reference to the next node on the list
e The first node is referred to as the head

o is used as the starting point for any iteration through the

list

e The last node of the list must have its next reference pointing to

None

o this will determine the end of the list

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Linked Lists (3)

Queues and Stacks

e These differ in the process of retrieving the elements
e Queues will use a first-in and first-out approach, known as FIFO
e Stacks use a last-in and fist-out approach, known as LIFO

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Linked Lists (4)
Queues (FIFO)

e Queues consist of two references to the nodes in a list

o head: points to a node in the list which is the top/first node

o tail: points to a node in the list which is the last node

The first node inserted into the list will be the first one to be retrieved
e Appending new elements to the list goes on the rear (the end)

e Retrieving elements will be taken from the front of the queue

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Linked Lists (5)
Queue Walkthrough
e Click Start to proceed! None

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Linked Lists (6)
Stacks (LIFO)

e Stacks consist of a single reference to the nodes in a list
o top: points to a node in the list which is the first node
* The last node inserted into the list will be the first one to be retrieved
* Appending new elements to the list goes on the top (the start)
e Retrieving elements will also be taken from the front of the queue

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Linked Lists (7)
Stack Walkthrough
e Click Start to proceed! None

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Linked Lists (8)

Retrieving Elements

e Accessing a particular element is different for a list compared to a linked list

o lists can be performed in constant time, O(]_) , when knowing which element you want to access

o linked lists take longer, and is performed in O(’I’L)

= required to traverse the whole list to find the element
e Searching for a specific element in either is dependent upon the size of the list

o therefore, the time complexity is O(n)
o you are required to iterate through the entire list to find the element

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Linked Lists (9)

Inserting Elements

e Inserting elements to a list can be done using:
o prepend() - insert an element at the beginning of a list

o append() - insert an element at the end of a list
e Prepending or appending elements at the beginning or end of a list is done in constant time

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Linked Lists (10)

Removing Elements

e Removing elements from a list can be done using either:
o remove() - removes an element from the beginning of a list

o pop() - removes an element from the end of a list

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Linked Lists (11)

Time Complexity

e Linked lists are always constant in their time complexity when it comes to inserting and deleting elements
* They have a performance advantage when implementing a queue

o elements inserted and removed at the beginning of a list
e However, linked lists have the same performance when implementing a stack

o elements are inserted and removed at the end of the list

Soventry 5062CEM Programming and Algorithms 2

IVEI’SI Advanced Data Structures

Goodbye

vent 5062CEM Programming and Algorithms 2
Niversli Advanced Data Structures

Goodbye (1)
Questions and Support

e Questions? Post them on the Community Page on Aula
e Additional Support? Visit the Module Support Page
e Contact Details:

o DrIan Cornelius, ab6459@coventry.ac.uk

https://github.coventry.ac.uk/pages/CUEH/5062CEM/module/support/
mailto:ab6459@coventry.ac.uk

