
 5062CEM Programming and Algorithms 2
Recursive Functions

Recursive Functions
Dr Ian Cornelius

1

 5062CEM Programming and Algorithms 2
Recursive Functions

Hello

2 . 1

 5062CEM Programming and Algorithms 2
Recursive Functions

Hello (1)
Learning Outcomes
1. Understand the concept of recursion and recursive functions
2. Practice and implement recursive functions

2 . 2

 5062CEM Programming and Algorithms 2
Recursive Functions

Recursive Functions

3 . 1

 5062CEM Programming and Algorithms 2
Recursive Functions

Recursive Functions (1)
Recursion is concerned with a function calling itself, either:

directly: the function contains a call to itself
indirectly: the function contains a call to another function, which in turn calls the recursive function

There must be some sort of condition to ensure this process can be stopped
otherwise, known as base case

defdef recursion_funrecursion_fun(())::

......

 recursion_fun recursion_fun(())

......

recursion_funrecursion_fun(())

3 . 2

 5062CEM Programming and Algorithms 2
Recursive Functions

Recursive Functions (2)
Infinite Recursion

When a function calls itself, then the called execution will also call a further execution and so on
this would result in an infinite number of calls made, known as infinite recursion

To avoid this, the recursive function must be carefully constructed
Ensure at some stage that the function can terminate without calling itself

3 . 3

 5062CEM Programming and Algorithms 2
Recursive Functions

Recursive Functions (3)
Why use Recursion?

Recursive functions can make code look clean and elegant
Generating sequences is easier with recursion instead of nested iteration
Complex tasks can be broken down into simpler sub-problems

But…
Following the logic of a recursive function can be difficult
Recursive calls are inefficient and can take up a lot of memory and time
Recursive functions can be difficult to debug

3 . 4

 5062CEM Programming and Algorithms 2
Recursive Functions

Recursive Functions (4)
Example: Factorial

A simple example of recursion is the factorial function,
When called with a positive integer, it will call itself by decreasing the number
Each function will multiply the number with the factorial of the number below it, until it is equal to one

defdef factorialfactorial((xx))::

ifif x x ==== 11::

returnreturn 11

returnreturn x x ** factorial factorial((x x -- 11))

factorial(5) -> 120

f(n) = n!

3 . 5

 5062CEM Programming and Algorithms 2
Recursive Functions

Recursive Functions (5)
Example: String Reversal

Another example of a recursive function is reversing a string
When met with an empty string, the process is terminated
However, if the list contains multiple elements, then a pattern needs to be found

the first character of the string is concatenated to the end of the remaining characters
this is repeated until the end of the string, i.e. when it is empty

defdef reverse_stringreverse_string((ss))::

ifif s s ==== """"::

returnreturn s s

returnreturn reverse_string reverse_string((ss[[11::]])) ++ s s[[00]]

reverse_string(‘hello’) -> olleh

3 . 6

 5062CEM Programming and Algorithms 2
Recursive Functions

Goodbye

4 . 1

 5062CEM Programming and Algorithms 2
Recursive Functions

Goodbye (1)
Questions and Support

Questions? Post them on the Community Page on Aula
Additional Support? Visit the
Contact Details:

Dr Ian Cornelius,

Module Support Page

ab6459@coventry.ac.uk

4 . 2

https://github.coventry.ac.uk/pages/CUEH/5062CEM/module/support/
mailto:ab6459@coventry.ac.uk

