Soventry 5062CEM Programming and Algorithms 2
niversl Recursive Functions

Recursive Functions
Dr Ian Cornelius



Soventry 5062CEM Programming and Algorithms 2

IVEI’SI Recursive Functions

Hello



vent 5062CEM Programming and Algorithms 2
niversl Recursive Functions

Hello (1)

Learning Outcomes

1. Understand the concept of recursion and recursive functions
2. Practice and implement recursive functions




Soventry 5062CEM Programming and Algorithms 2

IVEI’SI Recursive Functions

Recursive Functions



Ventrv 5062CEM Programming and Algorithms 2
IVEI’SI Recursive Functions

Recursive Functions (1)

e Recursion is concerned with a function calling itself, either:
o directly: the function contains a call to itself

o indirectly: the function contains a call to another function, which in turn calls the recursive function
 There must be some sort of condition to ensure this process can be stopped

o otherwise, known as base case

def recursion_fun

recursion_fun

recursion_fun



vent 5062CEM Programming and Algorithms 2
niversl Recursive Functions

Recursive Functions (2)
Infinite Recursion

* When a function calls itself, then the called execution will also call a further execution and so on
o this would result in an infinite number of calls made, known as infinite recursion

e To avoid this, the recursive function must be carefully constructed

e Ensure at some stage that the function can terminate without calling itself




vent 5062CEM Programming and Algorithms 2
niversl Recursive Functions

Recursive Functions (3)
Why use Recursion?

e Recursive functions can make code look clean and elegant
e Generating sequences is easier with recursion instead of nested iteration
e Complex tasks can be broken down into simpler sub-problems

But...

e Following the logic of a recursive function can be difficult
e Recursive calls are inefficient and can take up a lot of memory and time
e Recursive functions can be difficult to debug




vent 5062CEM Programming and Algorithms 2
niversl Recursive Functions

Recursive Functions (4)
Example: Factorial

e Asimple example of recursion is the factorial function, f(n) — ’I’L'
 When called with a positive integer, it will call itself by decreasing the number
e Each function will multiply the number with the factorial of the number below it, until it is equal to one

def factorial(x):
if x == 1:
return 1
return x * factorial(x - 1)

factorial(5) -> 120




vent 5062CEM Programming and Algorithms 2
niversl Recursive Functions

Recursive Functions (5)
Example: String Reversal

e Another example of a recursive function is reversing a string
* When met with an empty string, the process is terminated
* However, if the list contains multiple elements, then a pattern needs to be found

o the first character of the string is concatenated to the end of the remaining characters
o this is repeated until the end of the string, i.e. when it is empty

def reverse string(s):
_-L_': g == nn o,
return s

return reverse_string(s[1:]) + s[0O]

reverse_string(‘hello’) -> olleh




Soventry 5062CEM Programming and Algorithms 2

IVEI’SI Recursive Functions

Goodbye



vent 5062CEM Programming and Algorithms 2
niversl Recursive Functions

Goodbye (1)
Questions and Support

e Questions? Post them on the Community Page on Aula
e Additional Support? Visit the Module Support Page
e Contact Details:

o DrIan Cornelius, ab6459@coventry.ac.uk



https://github.coventry.ac.uk/pages/CUEH/5062CEM/module/support/
mailto:ab6459@coventry.ac.uk

