
 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Recapping Python from Year One
Dr Ian Cornelius

1

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Hello

2 . 1

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Hello (1)
Learning Outcomes
1. Understand the basic concepts of the Python programming language
2. Demonstrate knowledge learnt by creating simple Python scripts

2 . 2

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Using Python

3 . 1

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Using Python (1)
Python 3.x is the language of choice for this module

the simple nature of Python makes it a great programming language for beginners
it is cross-platform and works across all major operating systems

Requires an installation of Python
Windows:
Linux: sudo apt install python3
macOS:

Download the Executable Here

Download the Installer Here

3 . 2

https://www.python.org/downloads/windows/
https://www.python.org/downloads/macos/

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Using Python (2)
macOS and Linux

Typing python3 into the terminal window will call the Python interpreter

$ python3 filename.py$ python3 filename.py

Windows
Typing py or python3 into the command-line or PowerShell will call the Python interpreter

only a single command will work
depends on the method of installation

$ py filename.py$ py filename.py

3 . 3

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Using Python (3)
Recommended Integrated Development Environment

Supported IDE: JetBrains IntelliJ IDEA Community/Ultimate

Features:
Debugging
Code Refactoring and Profiling
Version Control Integration
Python, Java, Kotlin, PHP, etc.

Apply for an Educational Licence
Download JetBrains IntelliJ IDEA

3 . 4

https://www.jetbrains.com/shop/eform/students
https://www.jetbrains.com/idea/

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Variables and Data Types

4 . 1

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Variables and Data Types (1)
Variables

Variables in Python are a reserved memory location to store values of a particular data type
They consist of two parts: a name and a value

the names of a variable can be long or short

x x == 00

module_number module_number == "5032CEM""5032CEM"

roomNumber roomNumber == "ECG-01""ECG-01"

Naming Convention
There are a few rules to follow when naming your variables:
1. Names must start with a letter or an underscore
2. Names can only contain alphanumeric characters and underscores (A-z, 0-9, and _)
If you need to supply a comment to explain a name, then it does not reveal its true intent

if this is the case, then you may want to reconsider renaming your variable

et et == 00 # Elapsed time# Elapsed time

Could be:# Could be:

elapsedTime elapsedTime == 00

elapsed_time elapsed_time == 00

Note that variable names are case-sensitive:
i.e. module, Module and MODULE are all different variables (and memory locations)

4 . 2

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Variables and Data Types (2)
Data Types

Python has six built-in data types:
1. None: a null object
2. Boolean: True or False
3. Numeric: integer, float, and complex
4. Sequence: strings, lists, and tuples
5. Maps: dictionaries
6. Sets

4 . 3

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Variables and Data Types (3)
Determining the Type of Variable

If you are unsure about the type of variable, you can use the type() function
This will return the class type of the object/variable

stringExample1 stringExample1 == "Hello 5062CEM""Hello 5062CEM"

typetype((stringExample1stringExample1))

typetype(("Hello 5062CEM""Hello 5062CEM"))

type(stringExample1) -> <class ‘str’>

type(‘Hello 5062CEM’) -> <class ‘str’>

4 . 4

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Variables and Data Types (4)
Type Casting

You can specify a data type to a value by a process known as type casting
As Python is an object-oriented language, classes are used to define its data types
To cast a value as a particular type, you can use the built-in data types class constructors:

i.e. float(), int() and str()

castingInteger1 castingInteger1 == intint((5.65.6))

castingInteger2 castingInteger2 == intint(("8""8"))

castingInteger3 castingInteger3 == intint((TrueTrue))

castingInteger1 -> 5, <class ‘float’> to <class ‘int’>

castingInteger2 -> 8, <class ‘str’> to <class ‘int’>

castingInteger3 -> 1, <class ‘bool’> to <class ‘int’>

4 . 5

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Operators

5 . 1

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Operators (1)
An operator is a character that represents an action of some sort
They are used for performing operations on variables and values (otherwise known as operands)
Python has a collection of operators built-in:

Arithmetic: addition, subtraction, division, floor division, multiplication, exponentiation and modulus
Comparison: same as, not equal, greater than, greater than or equal to, lower than, and lower than or equal to
Logical: and, or and not
Identity: is and is not
Membership: in and not in

5 . 2

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Conditional Statements

6 . 1

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Conditional Statements (1)
Comparison and logical operators are used with conditional statements to ensure certain conditions have been met
Recap on the comparison and logical operators:

Comparison Operators
Operator Explanation

== The Same
!= Not the Same
> Greater Than
>= Greater Than or Equal To
< Less Than
<= Less Than or Equal To !

Logical Operators
Operator Explanation

and Both comparisons evaluate to True
or One comparison evaluates to True
not Inverts the evaluated boolean

6 . 2

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Conditional Statements (2)
A basic decision statement which is done using a selection structure
The decision will be described to the interpreter by a conditional statement

whereby a result can only be True or False
Python allows the following:

if statements
if ... else ... statement
if ... elif ... else statement
Nested if statements

6 . 3

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Conditional Statements (3)
if Statements

Often referred to as a decision-making statement
Used to control the flow of execution for statements and to test an expression

tests logically whether a condition is True or False

ifif variable variable ==== value value::

......

if else Statements
Known as an alternative execution, whereby there are two possibilities

the condition statement determines which of the two statements gets executed
The else is used as the ultimate result for a test expression

this result is only met if all other statements are False

ifif variable variable ==== value value::

......

elseelse::

......

6 . 4

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Conditional Statements (4)
else if Statements

elif is a keyword in Python to replace the else if conditions from other languages
The condition allows for two or more possibilities, known as a chained conditional

ifif variable variable >> value value::

......

elifelif variable variable << value value::

......

elseelse::

......

Nested if Statements
if statements can be written inside each other, and is known as nesting

ifif variable variable ==== value value::

ifif variable variable ==== value value::

......

elseelse::

ifif variable variable ==== value value::

......

elifelif variable variable ==== value value::

......

elseelse::

......

elifelif variable variable !=!= value value::

......

elseelse::

......

6 . 5

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Control Statements

7 . 1

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Control Statements (1)
Typically, statements in code will be executed sequentially
There are some situations which require a block of code to be repeated

i.e. summing numbers, entering multiple data points, capturing user input
Control statements, otherwise known as loop statements are required
Python has two loop structures:

while - conditional loops
for - counter controlled loops

7 . 2

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Control Statements (2)
Structure of a Loop

Loop structures can be likened to a conditional statement
they run on a True or False set of values
the loop will continuously loop until the condition is True
the loop will terminate when the condition is False

Loops can run for a desired length of time
or until a user-defined flag terminates it

Loops are great for re-using code
limiting the number of statements that are required
re-uses the same conditional arguments for testing instead of hundreds

7 . 3

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Control Statements (3)
while Loops

while loops, are loops that will execute zero or more times before it is terminated

whilewhile variable variable << value value::

......

 variable variable +=+= 11

If you are doing an incremental loop, you need to manually increase the variable
hence the variable += 1

7 . 4

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Control Statements (4)
for Loops

A for loop is a loop designed to increment a counter for a given range of values
They are best suited for problems that need to iterate a specific number of times

i.e. looping through a directory or set of files
The structure of a for loop consists of the following:
1. Initialisation of a counter
2. Test the counter-variable:

a. less than: start < stop
b. greater than: start > stop

3. Update the counter-variable

forfor variable variable inin rangerange((xx,, y y,, step step))::

......

7 . 5

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Control Statements (5)
Terminating Loops

break statements can be used to stop the loop if a condition is evaluated to True

whileExample1 whileExample1 == 00

whilewhile whileExample1 whileExample1 << 1010::

printprint((f"whileExample1 -> f"whileExample1 -> {{whileExample1whileExample1}}"",, end end=="\n\n""\n\n"))

ifif whileExample1 whileExample1 ==== 55::

breakbreak

 whileExample1 whileExample1 +=+= 11

whileExample1 -> 0

whileExample1 -> 1

whileExample1 -> 2

whileExample1 -> 3

whileExample1 -> 4

whileExample1 -> 5

7 . 6

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Functions

8 . 1

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Functions (1)
Functions are a block of reusable code that can be used to perform a single action
They provide an aspect of modularity to your code and ensure a high-degree of code reuse

Creating a Function
Functions in Python begin with the def keyword followed by a function name and a set of brackets (())
The code within the function then starts with after the colon (“:”) at the end of the brackets, and is indented once

defdef function_namefunction_name(())::

......

8 . 2

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Functions (2)
Using a Function

Functions can be called by using their function name, followed by a set of round brackets (())
this is often known as the function caller

defdef hellohello(())::

printprint(("Hello 5062CEM""Hello 5062CEM"))

hellohello(())

hello() -> Hello 5062CEM

8 . 3

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Functions (3)
Returning Values from a Function

Functions can also return data from inside it using the return statement
Useful if you have performed some operations inside a function and need to use the output

defdef hellohello(())::

returnreturn "Hello 5062CEM""Hello 5062CEM"

hellohello(())

hello() -> Hello 5062CEM

8 . 4

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Functions (4)
Parameters and Arguments

Data can be passed through to a function, and these are known as either parameters or arguments
Parameter and argument can be used for the same thing

simply it is data passed into a function
But they do have a slightly different meaning:

parameter is the variable listed inside the brackets in the function definition
argument is the value sent to the function

Parameters are specified after the declaration of the function name and inside the set of round brackets (())
you are able to add as many parameters as you want, separating them with a comma (,)

defdef hellohello((namename))::

returnreturn f"Hello f"Hello {{namename}} and welcome to 5062CEM." and welcome to 5062CEM."

hellohello(("Ian""Ian"))

hellohello(("Terry""Terry"))

hellohello(("Daniel""Daniel"))

hello(“Ian Cornelius”) -> Hello Ian Cornelius and welcome to 5062CEM.

hello(“Terry Richards”) -> Hello Terry Richards and welcome to 5062CEM.

hello(“Daniel Goldsmith”) -> Hello Daniel Goldsmith and welcome to 5062CEM.

8 . 5

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Functions (5)
Default Parameter Values

A function can be called without an argument if a default value has been assigned to the parameter
The default value will only be evaluated once and makes a difference when the default value is a mutable object

i.e. a list, dictionary or an instance of most classes

defdef hellohello((namename=="Ian Cornelius""Ian Cornelius",, code code=="5062CEM""5062CEM"))::

returnreturn f"Hello f"Hello {{namename}} and welcome to and welcome to {{codecode}}!"!"

hellohello(())

hellohello(("Terry Richards""Terry Richards"))

hellohello(("Terry Richards""Terry Richards",, "5034CEM""5034CEM"))

hello() -> Hello Ian Cornelius and welcome to 5062CEM!

hello(“Terry Richards”) -> Hello Terry Richards and welcome to 5062CEM!

hello(“Terry Richards”, “5034CEM”) -> Hello Terry Richards and welcome to 5034CEM!

8 . 6

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Classes and Objects

9 . 1

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Classes and Objects (1)
Classes provide a structure for the objects
They are used for defining:

a set of properties, represented by variables
the behaviour, which is represented by functions

extends extends

DOG

GERMANSHEPHERD GOLDENRETRIEVER

9 . 2

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Classes and Objects (2)
Creating a Class and Object

Classes will be defined using the class keyword followed by the name you want to give it

classclass myClassNamemyClassName::

......

Creating an object is achieved by creating a variable and calling our class name with a set of round brackets (())
i.e., objectExample1 = myClassName()

9 . 3

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Classes and Objects (3)
Using Class Constructors

All classes consist of an in-built function which is used to execute code when it is being initiated
this is the function known as __init__()

This initializer can be used to assign values to an object properties,
or other operations that are necessary to perform when an object is in the process of being created

__init__() is called automatically each time the class has been used to create a new object

classclass LecturerLecturer::

defdef __init____init__((selfself,, _name _name,, _age _age))::

 self self..name name == _name _name

 self self..age age == _age _age

lecturer1 lecturer1 == Lecturer Lecturer(("Ian Cornelius""Ian Cornelius",, 3434))

lecturer2 lecturer2 == Lecturer Lecturer(("Terry Richards""Terry Richards",, 11))

9 . 4

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Classes and Objects (4)
Class Functions

Classes can also consist of functions, and these will belong to the object that is created

classclass LecturerLecturer::

defdef __init____init__((selfself,, _name _name,, _age _age))::

 self self..name name == _name _name

 self self..age age == _age _age

defdef hellohello((selfself))::

returnreturn f"Hello f"Hello {{selfself..namename}}, you are , you are {{selfself..ageage}} years old." years old."

lecturer1 lecturer1 == Lecturer Lecturer(("Ian Cornelius""Ian Cornelius",, 3434))

lecturer2 lecturer2 == Lecturer Lecturer(("Terry Richards""Terry Richards",, 11))

lecturer1.hello() -> Hello Ian Cornelius, you are 34 years old.

lecturer2.hello() -> Hello Terry Richards, you are 1 years old.

9 . 5

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Classes and Objects (5)
Public and Private

Variables and functions can be set to private inside a class
this will restrict access to the variable outside the class
however, accessing the variable inside the class is permissive

This is achieved by adding two underscores (__) to the beginning of the variable name

classclass LecturerLecturer::

defdef __init____init__((selfself,, _name _name:: strstr,, _age _age:: intint))::

 self self..name name == _name _name

 self self..__age __age == _age _age

defdef change_agechange_age((selfself,, new_age new_age:: intint)) -->> NoneNone::

 self self..__age __age == new_age new_age

defdef get_ageget_age((selfself)) -->> intint::

returnreturn self self..__age__age

lecturer1 lecturer1 == Lecturer Lecturer(("Ian Cornelius""Ian Cornelius",, 3434))

lecturer1lecturer1..change_agechange_age((3535))

[Before] lecturer1.get_age() -> 34

[After] lecturer1.get_age() -> 35

9 . 6

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Goodbye

10 . 1

 5062CEM Programming and Algorithms 2
Recapping Python from Year One



Goodbye (1)
Questions and Support

Questions? Post them on the Community Page on Aula
Additional Support? Visit the
Contact Details:

Dr Ian Cornelius,

Module Support Page

ab6459@coventry.ac.uk

10 . 2

https://github.coventry.ac.uk/pages/CUEH/5062CEM/module/support/
mailto:ab6459@coventry.ac.uk

