
 5062CEM Programming and Algorithms 2
Threading in C++



Threading in C++
Dr Ian Cornelius

1

 5062CEM Programming and Algorithms 2
Threading in C++



Hello

2 . 1

 5062CEM Programming and Algorithms 2
Threading in C++



Hello (1)
Learning Outcomes
1. Understand the concept of threading in C++
2. Demonstrate their knowledge on the use of threading in C++

2 . 2

 5062CEM Programming and Algorithms 2
Threading in C++



Threading

3 . 1

 5062CEM Programming and Algorithms 2
Threading in C++



Threading (1)
Recap:

Thread refers to a basic unit of CPU utilisation
a separate process that has its own instructions and data
it may also represent a process that is part of a parallel program

although it may also represent an independent program
They share their code, data and other operating system resources with other threads belonging to the same process
A traditional process will have a single thread of control

if a process has multiple threads of control, then it has the ability to perform more than one task at a time
Threading on C++ uses the following libraries:

thread: cross-platform compatible, limited functionality
pthread.h: Linux and MacOS compatible

3 . 2

 5062CEM Programming and Algorithms 2
Threading in C++



thread Library

4 . 1

 5062CEM Programming and Algorithms 2
Threading in C++



thread Library (1)
Creating a Thread

The thread library is required and can be imported using the #include declaration
The function thread() is used to create a thread

##includeinclude <thread><thread>

stdstd::::threadthread((funcfunc,, arg arg));;

Accepts two parameters:
func: the function that will be threaded
arg: the arguments that need to be passed through to the threaded function

The join() function is used to wait for a thread to finish
must be called exactly one for each thread
must be called before a thread is destroyed

4 . 2

 5062CEM Programming and Algorithms 2
Threading in C++



thread Library (2)
Example: Creating and Terminating a Thread

##includeinclude <thread><thread>

##includeinclude <iostream><iostream>

voidvoid threaded_functionthreaded_function((constconst std std::::stringstring&& text text)) {{

 std std::::cout cout <<<< std std::::endl endl <<<< std std::::endl endl <<<< "[Thread ID: ""[Thread ID: " <<<< std std::::this_threadthis_thread::::get_idget_id(()) <<<< "] ""] " <<<< text text;;

}}

intint mainmain(()) {{

 std std::::thread t thread t == std std::::threadthread((threaded_functionthreaded_function,, "Threading is fun in 5062CEM!""Threading is fun in 5062CEM!"));;

 std std::::thread t2 thread t2 == std std::::threadthread((threaded_functionthreaded_function,, "Threading is also fun in 5069CEM!""Threading is also fun in 5069CEM!"));;

 t t..joinjoin(());;

 t2 t2..joinjoin(());;

returnreturn 00;;

}}

[Thread ID: 140511885125312] Threading is also fun in 5069CEM!

[Thread ID: 140511893518016] Threading is fun in 5062CEM!

4 . 3

 5062CEM Programming and Algorithms 2
Threading in C++



thread Library (3)
this_thread Namespace

The namespace this_thread can be used access properties for a given thread
get_id(): returns the ID of the running thread
sleep_until(): sleeps for a given amount of time using time_point
sleep_for(): sleeps for a given amount of time using duration

4 . 4

 5062CEM Programming and Algorithms 2
Threading in C++



thread Library (4)
Killing a Thread

There is no official method of killing a thread using the thread library
If necessary, the developer will provide their own solution

4 . 5

 5062CEM Programming and Algorithms 2
Threading in C++



pthread Library

5 . 1

 5062CEM Programming and Algorithms 2
Threading in C++



pthread Library (1)
Creating a Thread

The pthread.h library is required and can be imported using the #include declaration
The function pthread_create() is used to create a thread

##includeinclude <pthread.h><pthread.h>

pthread_createpthread_create((threadthread,, attr attr,, start_routine start_routine,, arg arg));;

Accepts four parameters:
thread: an opaque and unique identifier for a new thread returned by the subroutine
attr: an opaque attribute object that can be used to set the thread attributes
start_routine: the C++ routine that will execute the thread once it has been created
arg: a single argument that may be passed to the start_routine

Terminating a thread is achieved by calling the pthread_exit() function
often called when the thread has completed its work
used when the thread is no longer required to exist

##includeinclude <pthread.h><pthread.h>

pthread_exitpthread_exit((statusstatus));;

Accepts a single parameter:
status: normally provided a nullptr

5 . 2

 5062CEM Programming and Algorithms 2
Threading in C++



pthread Library (2)
Example: Creating and Terminating a Thread

##includeinclude <iostream><iostream>

##includeinclude <pthread.h><pthread.h>

##includeinclude <mutex><mutex>

##definedefine NUM_THREADSNUM_THREADS 22

structstruct arg_structarg_struct {{

charchar** arg1 arg1;;

}};;

voidvoid** threaded_functionthreaded_function((voidvoid** arguments arguments)) {{

autoauto** args args == ((structstruct arg_structarg_struct**)) arguments arguments;;

staticstatic std std::::mutex lockmutex lock;;

 std std::::lock_guard guardlock_guard guard{{locklock}};;

 std std::::cout cout <<<< "[Thread ID: ""[Thread ID: " <<<< pthread_selfpthread_self(()) <<<< "] ""] " <<<< args args->->arg1 arg1 <<<< std std::::endlendl;;

pthread_exitpthread_exit((nullptrnullptr));;

[Thread ID: 139934411257536] Threading with 5062CEM is fun!

[Thread ID: 139934402864832] Threading with 5062CEM is fun!

5 . 3

 5062CEM Programming and Algorithms 2
Threading in C++



pthread Library (3)
Joining Threads

Joining multiple threads together is achieved with the pthread_join() function
Call the thread until the thread terminates

pthread_joinpthread_join((threadIdthreadId,, returnStatus returnStatus));;

Accepts two parameters:
threadId: the ID of the thread to be joined
returnStatus: a pointer to the location of the threads exit status

5 . 4

 5062CEM Programming and Algorithms 2
Threading in C++



pthread Library (4)
Example: Joining Threads

The attribute state for joining needs to be declared
Threads can be joined together using the pthread_join()

##includeinclude <iostream><iostream>

##includeinclude <mutex><mutex>

##includeinclude <pthread.h><pthread.h>

##definedefine NUM_THREADSNUM_THREADS 44

voidvoid** threaded_functionthreaded_function((voidvoid** id id)) {{

staticstatic std std::::mutex lockmutex lock;;

 std std::::lock_guard guardlock_guard guard{{locklock}};;

 std std::::cout cout <<<< "Hello from Thread ID -> ""Hello from Thread ID -> " <<<< ((longlong)) id id <<<< std std::::

pthread_exitpthread_exit((nullptrnullptr));;

}}

intint mainmain(()) {{

th d t th dth d t th d [[NUM THREADSNUM THREADS]];

Creating Thread -> 0

Creating Thread -> 1

Creating Thread -> 2

Creating Thread -> 3

Hello from Thread ID -> 1

Hello from Thread ID -> 3

Hello from Thread ID -> 2

Hello from Thread ID -> 0

5 . 5

 5062CEM Programming and Algorithms 2
Threading in C++



pthread Library (5)
Detaching Threads

Detaching threads from each other is achieved with the pthread_detach() function

pthread_detachpthread_detach((threadIdthreadId,, returnStatus returnStatus));;

Accepts one parameter:
thread: the unique ID of the thread to be joined

1

 5062CEM Programming and Algorithms 2
Threading in C++



Goodbye

6 . 1

 5062CEM Programming and Algorithms 2
Threading in C++



Goodbye (1)
Questions and Support

Questions? Post them on the Community Page on Aula
Additional Support? Visit the
Contact Details:

Dr Ian Cornelius,

Module Support Page

ab6459@coventry.ac.uk

6 . 2

https://github.coventry.ac.uk/pages/CUEH/5062CEM/module/support/
mailto:ab6459@coventry.ac.uk

