
 5062CEM Programming and Algorithms 2
Pointers and References in C++



Pointers and References in C++
Dr Ian Cornelius

1

 5062CEM Programming and Algorithms 2
Pointers and References in C++



Hello

2 . 1

 5062CEM Programming and Algorithms 2
Pointers and References in C++



Hello (1)
Learning Outcomes
1. Understand the concept of pointers and references and their purpose in C++
2. Understand how to manage memory in C++

2 . 2

 5062CEM Programming and Algorithms 2
Pointers and References in C++



Pointers

3 . 1

 5062CEM Programming and Algorithms 2
Pointers and References in C++



Pointers (1)
Pointers hold the address for a declared variable
The asterisk (*) after int means pointer to
Pointers are intended to map directly to addressing mechanisms
of the machine
There are three ways of declaring a pointer variable:
1. int * pIntExample1
2. int *pIntExample1
3. int* pIntExample1 - preferred method

intint intExample1 intExample1 == 3232;;

intint** pIntExample1 pIntExample1 == &&intExample1intExample1;;

intExample1 -> 32

&pIntExample1 -> 0x5556c43fe018

3 . 2

 5062CEM Programming and Algorithms 2
Pointers and References in C++



Pointers (3)
Variables and Memory i

Variables are stored in the memory and visualised as a series of
unique addressed boxes
The operating system will pick an unused memory location, e.g.
0x1234

there must be enough space available to store the
variable

e.g. four bytes for an int
intExample1 is the name of the reserved memory location

intint intExample1 intExample1 == 3232;;

intint** pIntExample1 pIntExample1 == &&intExample1intExample1;;

intExample1 -> 32

&pIntExample1 -> 0x5577552b5018

3 . 3

 5062CEM Programming and Algorithms 2
Pointers and References in C++



Pointers (4)
Variables and Memory ii

Array elements are stored sequentially in a contiguous block of
memory

larger objects may span multiple blocks, i.e. arrays,
classes, and floats

##includeinclude <iostream><iostream>

intint arrayExample1 arrayExample1[[44]] == {{55,, 00,, 66,, 22}};;

intint mainmain(()) {{

forfor((intint &&element element :: arrayExample1 arrayExample1)) {{

 std std::::cout cout <<<< "element -> ""element -> " <<<< element element <<<< " [Address: "" [Address: " <<<< &&eleele

}}

returnreturn 00;;

}}

element -> 5 [Address: 0x55e34c89f010]

element -> 0 [Address: 0x55e34c89f014]

element -> 6 [Address: 0x55e34c89f018]

element -> 2 [Address: 0x55e34c89f01c]

3 . 4

 5062CEM Programming and Algorithms 2
Pointers and References in C++



Pointers (5)
Null Pointers

Pointers can also point to a null object
can be achieved with the nullptr keyword

nullptr can be assigned to any pointer type, but not to built-in
data types
There is only one nullptr and can be used for every pointer type

intint** pIntExample1 pIntExample1 == nullptrnullptr;;

doubledouble** pDoubleExample1 pDoubleExample1 == nullptrnullptr;;

intint intExample1 intExample1 == nullptrnullptr;; // Throws an error as intExmaple1 is not a// Throws an error as intExmaple1 is not a

3 . 5

 5062CEM Programming and Algorithms 2
Pointers and References in C++



Pointers (6)
Pointers into Arrays i

Pointers and arrays are closely related in C++
The name of an array can be used as a pointer to its initial element

requesting an element address before the initial or beyond size of an array should be avoided

Create an array, arrayExample1 containing four values
pointer1 is a pointer to the initial element
pointer2 is a pointer to the initial element (in a different
syntax)
pointer3 is a pointer to a different element in the array
pointer4 is a pointer to a memory address beyond the
last element

intint arrayExample1 arrayExample1[[44]] == {{55,, 00,, 66,, 22}};;

intint** pointer1 pointer1 == arrayExample1 arrayExample1;;

intint** pointer2 pointer2 == &&arrayExample1arrayExample1[[00]];;

pointer1 -> 0x55fce58ad010

pointer2 -> 0x55fce58ad010

intint arrayExample1 arrayExample1[[44]] == {{55,, 00,, 66,, 22}};;

intint** pointer3 pointer3 == arrayExample1 arrayExample1++22;;

intint** pointer4 pointer4 == arrayExample1 arrayExample1++66;;

pointer3 -> 0x560882c44018

pointer4 -> 0x560882c44028

3 . 6

 5062CEM Programming and Algorithms 2
Pointers and References in C++



Pointers (7)
Pointers into Arrays ii

Arrays can be iterated through using a pointer
Often chosen by developers based on aesthetic or logical reasoning
There is no performance gain over the usual method

Iterating using a Pointer

##includeinclude <iostream><iostream>

charchar arrayExample1 arrayExample1[[]] == {{'5''5',, '0''0',, '6''6',, '2''2'}};;

intint mainmain(()) {{

forfor((charchar** pointer pointer == arrayExample1 arrayExample1;; **pointer pointer !=!= 00;; pointer pointer++++)) {{

 std std::::cout cout <<<< "*pointer -> ""*pointer -> " <<<< **pointer pointer <<<< std std::::endlendl;;

}}

returnreturn 00;;

}}

*pointer -> 5

*pointer -> 0

*pointer -> 6

*pointer -> 2

Iterating Normally

##includeinclude <iostream><iostream>

charchar arrayExample1 arrayExample1[[]] == {{'5''5',, '0''0',, '6''6',, '2''2'}};;

intint mainmain(()) {{

forfor((charchar &&element element :: arrayExample1 arrayExample1)) {{

 std std::::cout cout <<<< "element -> ""element -> " <<<< element element <<<< std std::::endlendl;;

}}

returnreturn 00;;

}}

element -> 5

element -> 0

element -> 6

element -> 2

3 . 7

 5062CEM Programming and Algorithms 2
Pointers and References in C++



References

4 . 1

 5062CEM Programming and Algorithms 2
Pointers and References in C++



References (1)
Reference variables are an alias, another name for a variable that exists
Once initialised, either the variable name or reference name can be used to refer to the variable
References are often confused with pointers, but have three differences:

you cannot have a null reference
once initialised to an object, it cannot be changed to refer to another object
references must be initialised when created

References are often used for:
function argument lists
function return values

4 . 2

 5062CEM Programming and Algorithms 2
Pointers and References in C++



References (2)
Creating a Reference

References are initialised using the ampersand (&) character
The first int declaration is a new object being created
The second int declaration (with the &) is the reference object

this will refer to the memory address of intExample1

##includeinclude <iostream><iostream>

intint mainmain(()) {{

intint intExample1 intExample1 == 3232;;

intint&& rIntExample1 rIntExample1 == intExample1 intExample1;;

 std std::::cout cout <<<< "intExample1 -> ""intExample1 -> " <<<< intExample1 intExample1 <<<< " [Address: "" [Address: "

 std std::::cout cout <<<< "rIntExample1 -> ""rIntExample1 -> " <<<< rIntExample1 rIntExample1 <<<< " [Address: " [Address:

returnreturn 00;;

}}

intExample1 -> 32 [Address: 0x7ffc9877cf8c]

rIntExample1 -> 32 [Address: 0x7ffc9877cf8c]

4 . 3

 5062CEM Programming and Algorithms 2
Pointers and References in C++



References (3)
Pass by Reference

The swap() function consists of two parameters
each refers to the address location ##includeinclude <iostream><iostream>

voidvoid swapswap((intint &&xx,, intint &&yy)) {{

intint tmpX tmpX;;

 tmpX tmpX == x x;;

 x x == y y;;

 y y == tmpX tmpX;;

}}

intint mainmain(()) {{

intint intExample1 intExample1 == 55;;

intint intExample2 intExample2 == 1010;;

 std std::::cout cout <<<< "[Before] intExample1 -> ""[Before] intExample1 -> " <<<< intExample1 intExample1 <<<< " [A" [A

stdstd::::coutcout <<<< "[Before] intExample2 -> ""[Before] intExample2 -> " <<<< intExample2intExample2 <<<< " [Ad" [Ad

[Before] intExample1 -> 5 [Address: 0x7ffd36ff8250]

[Before] intExample2 -> 10 [Address: 0x7ffd36ff8254]

[After] intExample1 -> 10 [Address: 0x7ffd36ff8250]

[After] intExample2 -> 5 [Address: 0x7ffd36ff8254]

4 . 4

 5062CEM Programming and Algorithms 2
Pointers and References in C++



References (4)
Return as Reference from a Function

C++ functions can return a reference, similar to how they can
return pointers
When returning a reference, it returns an implicit pointer to the
return value

take care not to return a reference outside the scope of
an array

##includeinclude <iostream><iostream>

intint arrayExample1 arrayExample1[[44]] == {{55,, 00,, 66,, 22}};;

intint arrayLength arrayLength == sizeofsizeof((arrayExample1arrayExample1)) // sizeofsizeof((intint));;

intint&& set_valueset_value((intint i i)) {{

returnreturn arrayExample1 arrayExample1[[ii]];;

}}

intint mainmain(()) {{

forfor((intint i i == 00;; i i << arrayLength arrayLength;; i i++++)) {{

 std std::::cout cout <<<< "[Before] arrayExample1[""[Before] arrayExample1[" <<<< i i <<<< "] -> ""] -> " <<<< arr arr

}}

set_valueset_value((11)) == --99;;

forfor((intint ii == 00;; ii << arrayLengtharrayLength;; ii++++)) {{

[Before] arrayExample1[0] -> 5

[Before] arrayExample1[1] -> 0

[Before] arrayExample1[2] -> 6

[Before] arrayExample1[3] -> 2

[After] arrayExample1[0] -> 5

[After] arrayExample1[1] -> -9

[After] arrayExample1[2] -> 6

[After] arrayExample1[3] -> 2

4 . 5

 5062CEM Programming and Algorithms 2
Pointers and References in C++



Memory Management

5 . 1

 5062CEM Programming and Algorithms 2
Pointers and References in C++



Memory Management (1)
C++ has the feature of allocating the memory of variable at run time

this is known as dynamic memory allocation
Python automatically manages the memories that are allocated to variables

whereas C++ does not
Therefore, you will be required to deallocate the dynamically allocated memory manually

dynamically allocated memory is deallocated manually when the variable has no further use
Allocation and deallocation of memory can be achieved using new and delete keywords, respectively
Memory in C++ is divided into two parts:
1. stack
2. heap

5 . 2

 5062CEM Programming and Algorithms 2
Pointers and References in C++



Memory Management (2)
Allocation of Memory

Memory allocation is achieved using the new keyword

intint** pIntExample1 pIntExample1 == newnew intint;;

**pIntExample1 pIntExample1 == 3232;;

pIntExample1 -> 32 [Address: 0x55be05d432b0]

Memory has been dynamically allocated for int using the new keyword
Pointers have been used to aid in memory allocation

the new keyword returns the address of the memory location
in case of an array the new keyword returns the address of the first element

5 . 3

 5062CEM Programming and Algorithms 2
Pointers and References in C++



Memory Management (3)
Deallocation of Memory

Deallocating the memory is achieved using the delete keyword

##includeinclude <iostream><iostream>

intint mainmain(()) {{

intint** pIntExample1 pIntExample1 == newnew intint;;

**pIntExample1 pIntExample1 == 3232;;

 std std::::cout cout <<<< "pIntExample1 -> ""pIntExample1 -> " <<<< **pIntExample1 pIntExample1 <<<< " [Address: "" [Address: " <<<< pIntExample1 pIntExample1 <<<< "]""]" <<<< std std::::endlendl;;

deletedelete pIntExample1 pIntExample1;; // Deletes the variable and reserved memory// Deletes the variable and reserved memory

returnreturn 00;;

}}

pIntExample1 -> 32 [Address: 0x562ec2cc92b0]

5 . 4

 5062CEM Programming and Algorithms 2
Pointers and References in C++



Goodbye

6 . 1

 5062CEM Programming and Algorithms 2
Pointers and References in C++



Goodbye (1)
Questions and Support

Questions? Post them on the Community Page on Aula
Additional Support? Visit the
Contact Details:

Dr Ian Cornelius,

Module Support Page

ab6459@coventry.ac.uk

6 . 2

https://github.coventry.ac.uk/pages/CUEH/5062CEM/module/support/
mailto:ab6459@coventry.ac.uk

