Soventry 5062CEM Programming and Algorithms 2
niversl Pointers and References in C++

Pointers and References in C++
Dr Ian Cornelius

Soventry 5062CEM Programming and Algorithms 2

niversl Pointers and References in C++

Hello

vent 5062CEM Programming and Algorithms 2
Niversli Pointers and References in C++

Hello (1)

Learning Outcomes

1. Understand the concept of pointers and references and their purpose in C++
2. Understand how to manage memory in C++

Soventry 5062CEM Programming and Algorithms 2

niversl Pointers and References in C++

Pointers

Soventry 5062CEM Programming and Algorithms 2

P

niversl Pointers and References in C++

ointers (1)

Pointers hold the address for a declared variable
The asterisk (*) after int means pointer to

Pointers are intended to map directly to addressing mechanisms
of the machine
There are three ways of declaring a pointer variable:

1.int * pIntExamplel
2.1int *pIntExamplel
3.int* pIntExamplel - preferred method

int intExamplel = 32;
int* pIntExamplel = &intExamplel;

intExamplel -> 32
&pIntExamplel -> Ox5556c43fe018

vent 5062CEM Programming and Algorithms 2
Niversli Pointers and References in C++

Pointers (3)
Variables and Memory i

e Variables are stored in the memory and visualised as a series of
unique addressed boxes

e The operating system will pick an unused memory location, e.q.
0x1234

o there must be enough space available to store the
variable

= e.g. four bytes for an int

e intExamplel is the name of the reserved memory location

int intExamplel = 32;
int* pIntExamplel = &intExamplel;

intExamplel -> 32
&pIntExamplel -> 0x5577552b5018

vent 5062CEM Programming and Algorithms 2
Niversli Pointers and References in C++

Pointers (4)

Variables and Memory ii

e Array elements are stored sequentially in a contiguous block of
memory

o larger objects may span multiple blocks, i.e. arrays,
classes, and floats

#include <iostream>
int arrayExamplel|/4]| = {5, 0, 6, 2};
int main() {

for(int &element :

arrayExamplel) {

std: :cout << "element -> " << element << " [Address:

}

return 0;
}
element -> 5 [Address:
element -> 0 [Address:
element -> 6 [Address:
element -> 2 [Address:

0x55e34c89f010]
0x55e34c89f014]
0x55e34c89f018]
0x55e34c89f01c]

<< &el

vent 5062CEM Programming and Algorithms 2 C
niversl Pointers and References in C++

Pointers (5)
Null Pointers

e Pointers can also point to a null object
- b hi d with th Llotr k d int* pIntExamplel = nullptr;
can be achieved wi €nullptr KEywor double* pDoubleExamplel = nullptr;
e nullptr can be assigned to any pointer type, but not to built-in int intExample1l = nullptr; // Throws an error as intExmaplel is not a

data types
e Thereis only one nullptr and can be used for every pointer type

Soventry 5062CEM Programming and Algorithms 2

niversl Pointers and References in C++

Pointers (6)

Pointers into Arrays i

e Pointers and arrays are closely related in C++
e The name of an array can be used as a pointer to its initial element

o requesting an element address before the initial or beyond size of an array should be avoided

e Create an array, arrayExamplel containing four values

_ _ , o int arrayExamplel|/4| = {5, 0, 6, 2
o pointeri is a pointer to the initial element int* pointerl = arrayExamplel
o pointer2 is a pointer to the initial element (in a different int* pointer2 = &arrayExamplel[0

syntax)

o pointer3is a pointer to a different element in the array potnterl -> 8x55Tce58ado1e

pointer2 -> Ox55fce58ad010
o pointer4 is a pointer to a memory address beyond the

last element int arrayExamplel[4] = {5, 0, 6, 2
int* pointer3 = arrayExamplel+?2
int* pointer4 = arrayExamplel+6

pointer3 -> 0x560882c44018
pointer4 -> 0x560882c44028

vent 5062CEM Programming and Algorithms 2 C
niversl Pointers and References in C++

Pointers (7)

Pointers into Arrays ii

e Arrays can be iterated through using a pointer
e Often chosen by developers based on aesthetic or logical reasoning
e There is no performance gain over the usual method

[terating using a Pointer Iterating Normally

#include <ilostream> #include <iostream>

char arrayexample1| | = {'5', '0', '6", '2'}; char arrayexamplel| | = {'5', '0', '6", '2'};

int main() { int main() {
for(char* pointer = arrayExamplel; *pointer != 0; pointer++) { for(char &element : arrayExamplel) {

std::cout << "*pointer -> " << *pointer << std::endl; std: :cout << "element -> " << element << std::endl;

} }
return 0; return 0;

} }

*poilnter -> 5 element -> 5

*pointer -> 0 element -> 0

*pointer -> 6 element -> 6

*poilnter -> 2 element -> 2

Soventry 5062CEM Programming and Algorithms 2

niversl Pointers and References in C++

References

Soventry 5062CEM Programming and Algorithms 2
niversl Pointers and References in C++

References (1)

e Reference variables are an alias, another name for a variable that exists
e Once initialised, either the variable name or reference name can be used to refer to the variable
e References are often confused with pointers, but have three differences:

o you cannot have a null reference

o once initialised to an object, it cannot be changed to refer to another object
o references must be initialised when created
e References are often used for:
o function argument lists
o function return values

vent 5062CEM Programming and Algorithms 2
Niversli Pointers and References in C++

References (2)
Creating a Reference

e References are initialised using the ampersand (&) character

e The first int declaration is a new object being created

e The second int declaration (with the &) is the reference object

o this will refer to the memory address of intExamplel

#include <iostream>
int main() {
int intExamplel = 32;
int& rIntExamplel = intExamplel;

<< intExamplel << " [Address: "
<< rIntExamplel << " [Address:

std: :cout << "intExamplel ->
std: :cout << "rIntExamplel ->

return 0;

intExamplel -> 32 [Address: Ox7ffc9877cf8c]
rIntExamplel -> 32 [Address: Ox7ffc9877cf8c]

vent 5062CEM Programming and Algorithms 2 C
niversl Pointers and References in C++

References (3)
Pass by Reference

e The swap() function consists of two parameters

o each refers to the address location #include <iostream-
void swap(int &x, int &y) {

int tmpX;
tmpX = X;
X =Y.
y = tmpX:
}
int main() {
int intExamplel = 5;
int intExample2 = 10;
std: :cout << "[Before] intExamplel ->

std: ccout << "[Reforel intFxamnle? ->

<< intExamplel << " [A

<< intFxamnle? << " [Ad

[Before] intExamplel -> 5 [Address: Ox7ffd36ff8250]
[Before] intExample2 -> 10 [Address: Ox7ffd36ff8254]

[After] intExamplel -> 10 [Address: Ox7ffd36ff8250]
[After] 1intExample2 -> 5 [Address: Ox7ffd36ff8254]

vent 5062CEM Programming and Algorithms 2 C
niversl Pointers and References in C++

References (4)
Return as Reference from a Function

e C++ functions can return a reference, similar to how they can
return pointers #include <iostream>
e When returning a reference, it returns an implicit pointer to the int arraykxamplel[4] = {5, 0. 6, 2};
return value int arraylLength = sizeof(arrayeExamplel) / sizeof(int);
o take care not to return a reference outside the scope of
an array)

int& set value(int i) {
return arrayExamplel|i];

int main() {
for(int 1 = 0; 1 < arrayLength; i++) {

std: :cout << "[Before] arrayExamplel[" << 1 << "] -> " << arr

}
set_value(1l) = -9;
for(int i = O: i < arravlenath: i++) {

[Before] arrayExamplel[0] ->

5
[Before] arrayExamplel[1] -> 0
[Before] arrayExamplel[2] -> 6

2

[Before] arrayExamplel[3] ->

[After] arrayExamplel[0] -> 5
[After] arrayExamplel[1] -> -9
[After] arrayExamplel[2] -> 6
[After] arrayExamplel[3] -> 2

Soventry 5062CEM Programming and Algorithms 2

niversl Pointers and References in C++

Memory Management

Soventry 5062CEM Programming and Algorithms 2

niversl Pointers and References in C++

Memory Management (1)

e C++ has the feature of allocating the memory of variable at run time
o this is known as dynamic memory allocation
Python automatically manages the memories that are allocated to variables

o whereas C++ does not
e Therefore, you will be required to deallocate the dynamically allocated memory manually

o dynamically allocated memory is deallocated manually when the variable has no further use
Allocation and deallocation of memory can be achieved using new and delete keywords, respectively

e Memory in C++ is divided into two parts:
1. stack
2. heap

vent 5062CEM Programming and Algorithms 2
Niversli Pointers and References in C++

Memory Management (2)
Allocation of Memory

e Memory allocation is achieved using the new keyword

int* pIntExamplel = new int;
*pIntExamplel = 32;

pIntExamplel -> 32 [Address: 0x55be0®5d432b0]

e Memory has been dynamically allocated for int using the new keyword
e Pointers have been used to aid in memory allocation
o the new keyword returns the address of the memory location

o in case of an array the new keyword returns the address of the first element

vent 5062CEM Programming and Algorithms 2
Niversli Pointers and References in C++

Memory Management (3)
Deallocation of Memory

e Deallocating the memory is achieved using the delete keyword

#include <iostream>
int main() {
int* pIntExamplel = new int;
*pIntExamplel = 32;
std: :cout << "pIntExamplel -> " << *pIntExamplel << " [Address:
delete pIntExamplel; // Deletes the variable and reserved memory

<< pIntExamplel << "|" << std::endl;

return 0;

pIntExamplel -> 32 [Address: 0x562ec2cc92b0]

Soventry 5062CEM Programming and Algorithms 2

niversl Pointers and References in C++

Goodbye

vent 5062CEM Programming and Algorithms 2
Niversli Pointers and References in C++

Goodbye (1)
Questions and Support

e Questions? Post them on the Community Page on Aula
e Additional Support? Visit the Module Support Page
e Contact Details:

o DrIan Cornelius, ab6459@coventry.ac.uk

https://github.coventry.ac.uk/pages/CUEH/5062CEM/module/support/
mailto:ab6459@coventry.ac.uk

