
TESTING
DR IAN CORNELIUS

1

4061CEM - Programming and Algorithms 1

HELLO
Learning Objectives

1. Understand the concept of testing and how to test your code
2. Demonstrate your knowledge of testing your code

2

4061CEM - Programming and Algorithms 1

INTRODUCTION TO TESTING
You may find yourself already having tested your code, this is exploratory testing

running your application for the first time and checking the features
This form of testing is typically done without a plan
No matter how well your application has been designed and coded, there will be some defects
Testing is concerned with running your application with the intent of finding faults
A successful test is one deemed to have found errors, not one that does not find any errors

3 . 1

4061CEM - Programming and Algorithms 1

MANUAL OR AUTOMATED TESTING?
1. MANUAL TESTING

Make a list of the following:
all features the application has
the different types of input accepted
any expected results

Everytime a change is made to your code, you can go through the list
Fairly tedious, and not much fun

2. AUTOMATED TESTING
Execution of a test plan consisting of:

parts of the application you want to test
the order in which they are to be tested
any expected responses from functions

The execution is performed by a script and not by yourself
Python has a collection of tools and libraries to assist in automated testing

i.e. pytest and unittest

3 . 2

4061CEM - Programming and Algorithms 1

INTEGRATION TESTING
Integration tests look at the following:

interfaces between components
interactions between various parts of the system
file systems and hardware or interfaces between these systems

This sort of testing is often performed after unit testing (more on that later)
An integration test will interaction between two components and not the individual component functionality

think of it as if you are testing how a class interacts with another class
You can consider performance testing to also be a part of this type of testing

4 . 1

4061CEM - Programming and Algorithms 1

APPROACHES TO INTEGRATION TESTING (1)
There are two approaches to integration testing:

1. Big Bang
2. Incremental

Top-Down
Bottom-Up
Sandwich

4 . 2

4061CEM - Programming and Algorithms 1

APPROACHES TO INTEGRATION TESTING (2)
BIG BANG

All components and modules are integrated at once
The unionising of different modules is then tested as a whole entity
This approach will save time on testing and execution of the tests
Test cases and their outcomes must be recorded correctly to ensure a robust test suite is performed
Advantages:

the whole system is tested and requires minor planning
consists of completed and checked modules (unit testing)
often has no demand for urgent build fixings

Disadvantages:
hard for modules and components to be separated if a bug has been detected
has a high risk to miss crucial issues when testing the whole system
failures often occur more frequently due to the simultaneous checking of numerous modules
one mistake can influence the results of the whole testing

4 . 3

4061CEM - Programming and Algorithms 1

APPROACHES TO INTEGRATION TESTING (2)
INCREMENTAL I

Each element of the system is tested individually using unit tests
Modules are then integrated incrementally and tested to ensure they interact correctly
Primary focus of this test is to ensure that the interface and integrated links between modules work correctly
The process is repeated until modules are combined and tested successfully
Approaches towards this type of testing are:

Top-Down
Bottom-Up
Sandwich

4 . 4

4061CEM - Programming and Algorithms 1

APPROACHES TO INTEGRATION TESTING (3)
INCREMENTAL II
TOP-DOWN

Testing starts at the top and works towards the bottom
i.e. start with the central module to a sub-module

Advantages:
provides early exposure to defects in the architecture
outlines the working of an application as a whole at an early stage

Disadvantages:
important modules are tested later on in the cycle
can be quite challenging to write the test condition

4 . 5

4061CEM - Programming and Algorithms 1

APPROACHES TO INTEGRATION TESTING (4)
INCREMENTAL III
BOTTOM-UP

Testing starts at the bottom and works towards the top
i.e. modules on the bottom layer are integrated and tested first, sequentially adding modules as integration
moves up

Advantages:
easier to create test-conditions
testing of critical modules’ comes at an early stage, helps in an early discovery of errors
interface defects are detected at an earlier stage

Disadvantages:
design defects are caught at a later stage
there is no working application until the last module is built

4 . 6

4061CEM - Programming and Algorithms 1

APPROACHES TO INTEGRATION TESTING (5)
INCREMENTAL IV
SANDWICH

Considered to be a hybrid of top-down and bottom-up incremental testing
Middle layers are identified and a bottom-up and top-down testing approach is applied

the chosen middle layer is determined heuristically, i.e. selecting a layer with minial use of stubs and drivers
Advantages:

beneficial for larger projects that has subprojects
top-down and bottom-up testing are run simultaneously

Disadvantages:
before unification of modules, subsystems and interfaces are not tested thoroughly
not advised for systems that are highly inter-dependent with each other

4 . 7

4061CEM - Programming and Algorithms 1

PERFORMING AN INTEGRATION TEST
Performing an integration test can be done by following the collection of steps below:

1. Prepare the integration test plan
2. Design the test scenarios, cases and scripts
3. Execute the test cases and follow-up with a report on the defects
4. Tracking and re-testing of the defects
5. Repeat steps three and four

4 . 8

4061CEM - Programming and Algorithms 1

UNIT TESTING
Unit testing looks at the individual units/components of an application
The purpose is to validate each unit of an application performs correctly
Mainly concerned with the following:

highlight the working and failing parts of an application
checking the input values and accuracy of the output data
optimisation of algorithms and performance

Advantages:
each part of an application is tested individually
all components of an application is tested at least once
errors can be picked up earlier, and thus resolved earlier
the scope of testing is smaller, and thus easier to fix the errors

5 . 1

4061CEM - Programming and Algorithms 1

PERFORMING A UNIT TEST
Performing a unit test can be done by following the collection of steps below:

1. Keep the unit tests small and fast
2. Automate the tests to reduce turn-around
3. Ensure the tests are simple to run
4. Measure the outcome of the tests
5. Fix any tests that fail immediately
6. Keep testing at a unit level
7. Name the tests appropriately
8. Cover the boundary cases
9. Provide a method of randomly generating data

5 . 2

4061CEM - Programming and Algorithms 1

EXAMPLE OF A SIMPLE TEST IN PYTHON
Unit test for checking the sum() function would require checking the output of sum() against a known output

i.e. check that the sum of numbers 4, 5 and 6 is equal to 15

The above code will not display anything, as it satisfies to be True
However, if we change the input for sum() to [2, 3, 4] we get a different result

An AssertionError is thrown with the message "Should be 15"
You can put this code into a Python file called test_sum.py and this will become a test case

assert sum([4, 5, 6]) == 15, "Should be 15"

assert sum([2, 3, 4]) == 15, "Should be 15"

5 . 3

4061CEM - Programming and Algorithms 1

UNIT TESTING IN PYTHON
The unittest module contains both a testing framework and test runner
However, there are some important requirements when writing and executing unit tests:

tests are put into classes as methods
a series of special assertion functions are used instead of the built-in assert statement

5 . 4

4061CEM - Programming and Algorithms 1

ASSERTION FUNCTIONS
Method Equivalent Reverse

assertEquals(a, b) a == b assertNotEqual(a, b)

assertTrue(x) bool(x) is True n/a

assertFalse(x) bool(x) is False n/a

assertIs(a, b) a is b assertIsNot()

assertIsNone(x) x is None assertIsNotNone()

assertIn(a, b) a in b assertNotIn()

assertIsInstance(a, b) isInstance(a, b) assertNotIsInstance()

Further Reading:
Unit Testing in Python

5 . 5

4061CEM - Programming and Algorithms 1

https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertEqual

HOW TO CREATE A UNIT TEST
You will create test methods to test each function in your application

it is best to prefix these test methods with test_ followed by the name of the function you are testing

Note, that in this example I am using an in-built Python method
if you are using your own method from a different class/file you need to import it

import unittest

class TestCases(unittest.TestCase):

 def test_sum(self):

 self.assertEqual(sum([4, 5, 6]), 15, 'Should be 15')

unittest.main()

5 . 6

4061CEM - Programming and Algorithms 1

STRUCTURING A UNIT TEST
Before you delve into writing your tests, consider the following questions:

1. what do you want to test?
2. are you writing a unit test or integration test?

The structure of your test should loosely resemble:
create a set of inputs
execute the code that is being tested, and capture the output
compare the output with the expected result

5 . 7

4061CEM - Programming and Algorithms 1

WRITING AN ASSERTION
The last step to writing a test is validation of the output against the expected result, known as an assertion
When it comes to writing an assertion, there are some best practices you should be following:

ensure the tests are repeatable
run the test multiple times to ensure you get the same output everytime
assert the results that relate to the input data

5 . 8

4061CEM - Programming and Algorithms 1

WRITING AND EXECUTING UNIT TEST
Demonstration of Unit Testing in Python

Refer to the pre-recorded video for a demonstration

4061CEM DEMO - Unit Testing4061CEM DEMO - Unit Testing
ShareShare

5 . 9

4061CEM - Programming and Algorithms 1

https://www.youtube.com/gWWCtIQv_kE
https://www.youtube.com/watch?v=gWWCtIQv_kE
https://www.youtube.com/channel/UCPiqUBVpufeFs0S9uyRsmAA?feature=emb_ch_name_ex

WHAT ARE SIDE EFFECTS?
Sometimes your code may not return a value from the function
It may be the case that something will be altered outside the function

i.e. an attribute of a class, a file or a value in a database
These are known as side effects, and should be considered before being included in the list of assertions
If a unit of code has a lot of side effects, you are breaking the single responsibility principle

SINGLE RESPONSIBILITY PRINCIPLE
A programming principle that states the following:

Every module, class or function should have responsibility over a single part of a programs functionality
For example, consider a function that compiles and prints a report:

1. the content of the report could change
2. the formatting of the report could also change

These two aspects should be split into separate classes or functions
Enables code to be designed in a way it is repeatable and simple for testing

6

4061CEM - Programming and Algorithms 1

GOODBYE
Questions?

Post them in the Community Page on Aula
Contact Details:

Dr Ian Cornelius, ab6459@coventry.ac.uk

7

4061CEM - Programming and Algorithms 1

mailto:ab6459@coventry.ac.uk

