
ALGORITHMS AND BIG-O NOTATION
DR
IAN CORNELIUS

1

4061CEM - Programming and Algorithms 1

HELLO
Learning Objectives

1. Understand what an algorithm is and the purpose of Big-O
notation
2. Demonstrate the ability to use algorithms and Big-O
notation

2

4061CEM - Programming and Algorithms 1

INTRODUCTION TO ALGORITHMS
An algorithm is a procedure or formula to solve a
problem

they are based on a performing a sequence of
steps/actions
This could be a function that does a particular job each
time it is called
An algorithm will have a well-defined set of steps and
provide an output

eventually, after n steps it will
terminate
They can be written in either pseudocode or displayed as
a flow chart

3
 .
1

4061CEM - Programming and Algorithms 1

COMPUTER PROGRAM VS. ALGORITHMS
An algorithm is a self-contained, step-by-step set of
operations

they are performed to solve a specific problem or a
class of problems
A computer program is a sequence of instructions

they comply to the rules of a specific programming
language
they are written to perform a specific task with a
computer
may contain multiple algorithms

3
 .
2

4061CEM - Programming and Algorithms 1

DEFINING AN ALGORITHM
Algorithms consist of:

a problem: defined to be a real-world
problem
an algorithm: a defined step-by-step
process designed for the problem
inputs: algorithm is provided necessary
and desired inputs
a processing unit: inputs are processed
to produce a desired output
output: the outcome of the
algorithm

3
 .
3

4061CEM - Programming and Algorithms 1

EXAMPLE OF AN ALGORITHM
Sorting cards by their respective colour

1. Pick up all the cards
2. Pick a card from your hand and look at the colour
3. If there is a pile of cards with that colour already,
add it to that pile
4. If there is not a pile of cards with that colour, make a
new pile for this colour
5. If there is a card still in your hand, go back to the
second step
6. If there are no cards in your hand, then the cards are
sorted, and you are done

The above example is readable by a human

For a machine to understand it would require
functions and nested if statements and control
statements

3
 .
4

4061CEM - Programming and Algorithms 1

PSEUDOCODE
Pseudocode is a language used to describe
algorithms
Written in a high-level method so anyone can read it and
understand it
Language similar to programming code will be used

therefore, it feels natural whilst developers read
it

PSEUDOCODE FOR CARD
SORTING

SORT_CARDS(CARDS)

 DATABASE COLORS = EMPTY

 FOR i <- 0 to length(CARDS)

 IF CARDS[i] == COLORS[i]

 COLORS[i] <- COLORS[i] + 1

 ELSE

 COLORS[i] = 1



3
 .
5

4061CEM - Programming and Algorithms 1

FLOW DIAGRAM OF CARD SORTING
Flow diagrams are great for visualising the steps of an
algorithm
Easy to visualise what is happening at each step

3
 .
6

4061CEM - Programming and Algorithms 1

CHARACTERISTICS OF AN ALGORITHM
An algorithm will consist of the following
characteristics:

some sort of input
a collection of results, known as an
output
instructions should be unambiguous and easy to
understand
the algorithm should be finite and conclude to
something
it should be effective
the algorithm should language agnostic

3
 .
7

4061CEM - Programming and Algorithms 1

WRITING AN ALGORITHM
When writing an algorithm, keep these ideologies in
mind:

an algorithm is a step-by-step process
try and go-back to a step if a loop or condition
fails
jump between statements if certain conditions are
met
use the break keyword to stop and terminate
the process when the condition is met

3
 .
8

4061CEM - Programming and Algorithms 1

BIG-O NOTATION
Used to describe the performance or complexity of an
algorithm

describes the worst-case scenario
also describes the execution time or space used

i.e. memory or disk usage

4
 .
1

4061CEM - Programming and Algorithms 1

GROWTH RATE OF COMPLEXITY

O Complexity Growth Rate

O(1) constant fast

O(log n) logarithmic

O(n) linear time

O(n log n) log linear

O(n) quadratic

O(n) cubic

O(2) exponential

O(n!) factorial slow

2

3

n

4
 .
2

4061CEM - Programming and Algorithms 1

EXAMPLES OF BIG-O NOTATION (1)
O(1)

Will always execute in the same time (or space)

O(N)
Performance will grow linearly and in direct proportion
of input data

def equal_to_one(_list):

 if _list[0] == 1:

 return True



def contains_number(_list, _number):

 for x in _list:

 if x == _number:

 return True

 else:

 return False



4
 .
3

4061CEM - Programming and Algorithms 1

EXAMPLES OF BIG-O NOTATION (2)
O(N)

Performance is directly proportional to the squared size
of the input data
Most common with algorithms that have nested iterations

deeper nested iterations will result in
O(N), O(N) etc.

2

3 4

def contains_duplicates(_list):

 for i in range(len(_list)):

 for j in range (len(_list)):

 if i == j:

 continue

 if list[i] == list[j]:

 return True

 return False



4
 .
4

4061CEM - Programming and Algorithms 1

EXAMPLES OF BIG-O NOTATION (3)
O(2)

Denotes an algorithm where the growth doubles with each
addition to the input
growth curve is considered to be exponential

N

def fibonacci(number):

 if number <= 1: return number

 return fibonacci(number - 2) + fibonacci(number - 1)



4
 .
5

4061CEM - Programming and Algorithms 1

CALCULATING THE BIG-O VALUE OF AN ALGORITHM (1)
1. Break the algorithm into individual operations
2. Calculation the Big-O of each operation
3. Add up the Big-O of each operation together
4. Remove the constants
5. Find the highest-order term

this will be what we consider to be the Big-O of the
algorithm

4
 .
6

4061CEM - Programming and Algorithms 1

CALCULATING THE BIG-O VALUE OF AN ALGORITHM (2)
INSTRUCTIONS

1. Break the algorithm into individual operations
2. Calculation the Big-O of each operation
3. Add up the Big-O of each operation together
4. Remove the constants
5. Find the highest-order term

this will be what we consider to be the Big-O of the
algorithm

def add(x, y):

 total = x + y

 return total



4
 .
7

4061CEM - Programming and Algorithms 1

GOODBYE
Questions?

Post them in the Community Page on
Aula
Contact Details:

Dr Ian Cornelius, ab6459@coventry.ac.uk

5

4061CEM - Programming and Algorithms 1

mailto:ab6459@coventry.ac.uk

