
CLASSES AND OBJECTS
DR
IAN CORNELIUS

1

4061CEM - Programming and Algorithms 1

HELLO
Learning Objectives

1. Understand what a class and object is
2. Demonstrate the ability to use classes/objects

2

4061CEM - Programming and Algorithms 1

INTRODUCTION TO CLASSES
Classes provide a structure for the objects
They are used for defining:

a set of properties, represented by variables
the behaviour, which are represented by functions

Objects created from classes will be referred as
instance(s)
the process of creating an object from a class is
instantiation

Objects will have a property
a set of values that are associated to a real-world
entity

For example:
Class: Dog
Objects: German Shepherd, Golden Retriever

3
 .
1

4061CEM - Programming and Algorithms 1

CLASS EXAMPLE
This is a class diagram, it shows the variables and
functions of a class
+ and - symbols declare
whether a variable or function is public or
private
Top half denotes all the variables of a class
Bottom half denotes all the methods/functions of a
class

3
 .
2

4061CEM - Programming and Algorithms 1

CLASSES IN PYTHON (1)
CREATING A CLASS

Classes will be defined using the class
keyword followed by the name you want to give it

CREATING AN OBJECT
An object can be created from the class by calling upon
the class name

we first create a variable for this class object
then we call the class name followed by brackets

The variable name can then be accessed
by calling the variable name at the end of the
object

class Student:

 name = "Ian"



student1 = Student()

student1.name = Ian

3
 .
3

4061CEM - Programming and Algorithms 1

USING CLASS CONSTRUCTORS
All classes consist of an in-built function which is
used to execute code when it is being initiated

this is the function known as
__init__()
This initialiser can be used to assign values to an
objects properties,

or other operations that are necessary to perform when
an object is in the process of being created
__init__() is called automatically each
time the class has been used to create a new object

class Student:

 def __init__(self, name, age):

 self.name = name

 self.age = age



student1 = Student("Ian", 33)

student2 = Student("Terry", 1)



student1.name = Ian

student1.age = 33

student2.name = Terry

student2.age = 1



3
 .
4

4061CEM - Programming and Algorithms 1

CLASS FUNCTIONS
Classes can also consist of functions, and these will
belong to the object that is created

class Student:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def greeting(self):

 return "Hello " + self.name + " and welcome to 4061CEM!"



student1 = Student("Ian", 33)

student1.greeting() = Hello Ian and welcome to
4061CEM!

3
 .
5

4061CEM - Programming and Algorithms 1

MODIFYING AN OBJECTS PROPERTIES (1)
Objects can be modified by accessing the variables
directly

this is not a very good method of doing this

class Student:

 def __init__(self, name, age):

 self.name = name

 self.age = age



student1 = Student("Ian", 33)

student1.age = -1



[Before] student1.age = 33

[After] student1.age = -1



3
 .
6

4061CEM - Programming and Algorithms 1

MODIFYING AN OBJECTS PROPERTIES (2)
A better way of modifying a classes variable is by
creating a function

class Student:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def change_age(self, new_age):

 self.age = new_age



student1 = Student("Ian", 33)

student1.change_age(-1)



[Before] student1.age = 33

[After] student1.age = -1



3
 .
7

4061CEM - Programming and Algorithms 1

MODIFYING AN OBJECTS PROPERTIES (3)
Variables and functions can be private inside a
class
This is achieved by adding two underscores
(‘__’) to the beginning of the variable
name

class Student:

 def __init__(self, name, age):

 self.__name = name

 self.__age = age

 def change_age(self, new_age):

 self.__age = new_age

 def get_age(self):

 return self.__age



student1 = Student("Ian", 33)

student1.change_age(-1)



[Before] student1.get_age() = 33

[After] student1.get_age() = -1



3
 .
8

4061CEM - Programming and Algorithms 1

MODIFYING AN OBJECTS PROPERTIES (4)
Objects can be deleted by using the del
keyword

del student1

3
 .
9

4061CEM - Programming and Algorithms 1

PASS KEYWORD
Classes cannot be empty, but if you require a class to
be empty you can use the pass keyword

class Student:

 pass



3
 .
10

4061CEM - Programming and Algorithms 1

INHERITANCE WITH CLASSES
Inheritance allows you to define a class that will
inherit all the functions and properties from another
class
There are two important terminologies to know:

parent class which is the class from
which another class is being inherited from
child class which is the class that is
inherited from the parent class

4
 .
1

4061CEM - Programming and Algorithms 1

CREATING A PARENT CLASS
Any class you create in Python can be a parent class

the syntax is the same as creating any other class

class Student:

 def __init__(self, name, age):

 self.__name = name

 self.__age = age

 def change_age(self, new_age):

 self.__age = new_age

 def get_age(self):

 return self.__age

 def get_name(self):

 return self.__name

 def greeting(self):

 return f"Hello {self.__name} and welcome to 4061CEM!"



student1 = Student("Ian", 33)

student1.get_name() = Ian

student1.get_age() = 33

student1.greeting() = Hello Ian and welcome to
4061CEM!



4
 .
2

4061CEM - Programming and Algorithms 1

CREATING A CHILD CLASS
A child class is created by passing through the parent
class as parameter when creating the child class

the child class will inherit all properties and
functions of the parent class

class Person(Student):

 pass



person1 = Person("Ian", 33)

person1.get_name() = Ian

person1.greeting() = Hello Ian and welcome to
4061CEM!



4
 .
3

4061CEM - Programming and Algorithms 1

MODIFYING A CHILD CLASS (1)
When adding an __init__ function to the
child class, it will no longer inherit the
__init__ function from the parent class
To keep the variables from the parent class, we need to
call the __init__ function from the parent
class

class Person(Student):

 def __init__(self, name, age, location):

 Student.__init__(self, name, age)

 self.location = location



person1 = Person("Ian", 33, "Coventry")

person1.get_name() = Ian

person1.location = Coventry



4
 .
4

4061CEM - Programming and Algorithms 1

MODIFYING A CHILD CLASS (2)
The same process can be achieved using the
super() function, instead of using the parent
classes name

class Person(Student):

 def __init__(self, name, age, location):

 super().__init__(name, age)

 self.location = location



person1 = Person("Ian", 33, "Coventry")

person1.get_name() = Ian

person1.location = Coventry



4
 .
5

4061CEM - Programming and Algorithms 1

ADDING A FUNCTION TO A CHILD CLASS
Functions can be added to the child class in the same
manner

let’s add a function to greet the person and acknowledge
where they have come from

class Person(Student):

 def __init__(self, name, age, location):

 super().__init__(name, age)

 self.location = location

 def greeting(self):

 return f"Hello {self.get_name()} and welcome to 4061CEM from {self.location}!"



person1 = Person("Ian", 33, "Coventry")

person1.greeting() = Hello Ian and welcome to 4061CEM
from Coventry!

4
 .
6

4061CEM - Programming and Algorithms 1

GOODBYE
Questions?

Post them in the Community Page on
Aula
Contact Details:

Dr Ian Cornelius, ab6459@coventry.ac.uk

5

4061CEM - Programming and Algorithms 1

mailto:ab6459@coventry.ac.uk

