Coventry &2

university ==

CLASSES AND OBJECTS

DR IAN CORNELIUS

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

HELLO

e Learning Objectives
1. Understand what a class and object is
2. Demonstrate the ability to use classes/objects

Coventrv 3 dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

INTRODUCTION TO CLASSES

Classes provide a structure for the objects Dog |
They are used for defining:

o a set of properties, represented by variables /' ‘\

o the behaviour, which are represented by functions extends extends
¢ Objects created from classes will be referred as instance(s) (\
o the process of creating an object from a class is instantiation GermanShepherd GoldenRetriever

Objects will have a property

o a set of values that are associated to a real-world entity
For example:

o Class: Dog

o Objects: German Shepherd, Golden Retriever

Covent

\dﬁ/&' 4061CEM - Programming and Algorithms 1
university S22 g g and Alg

CLASS EXAMPLE

This is a class diagram, it shows the variables and functions of a class
+and - symbols declare whether a variable or function is public or private
Top half denotes all the variables of a class

Bottom half denotes all the methods/functions of a class

Dog

+5tring owner
+5tring colour
+5tring name

+5tring breed
-5tring status
+Integer age

+__init__(self, owner, breed, colour, name)
+bark(self)

+sleep(self)

+rename(self, name)

Coventry

.ty \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

CLASSES IN PYTHON (1)
CREATING A CLASS

¢ Classes will be defined using the c1lass keyword followed by the name you want to give it

¢/> class Student:

name = "Ian"

CREATING AN OBJECT

¢ An object can be created from the class by calling upon the class name
o we first create a variable for this class object

o then we call the class name followed by brackets

¢[> studentl = Student ()

e The variable name can then be accessed
o by calling the variable name at the end of the object

p studentl.name = Ian

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

USING CLASS CONSTRUCTORS

¢ All classes consist of an in-built function which is used to execute code when it is being initiated

o this is the function known as init ()
e This initialiser can be used to assign values to an objects properties,

o or other operations that are necessary to perform when an object is in the process of being created
e init_ () is called automatically each time the class has been used to create a new object

¢/> class Student:
def init (self, name, age):
self.name = name

self.age = age

Student ("Ian", 33)

<[> studentl

student?2 Student ("Terry", 1)

p studentl.name = Ian
studentl.age = 33
student?2.name = Terry

student2.age =1

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

CLASS FUNCTIONS

e Classes can also consist of functions, and these will belong to the object that is created

¢/> class Student:

def init (self, name, age):
self.name = name
self.age = age

def greeting(self):

return "Hello " 4+ self.name + " and welcome to 4061CEM!"

¢/> studentl = Student ("Ian", 33)

P studentl.greeting() = Hello Ian and welcome to 4061CEM!

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

MODIFYING AN OBJECTS PROPERTIES (1)

¢ Objects can be modified by accessing the variables directly
o this is not a very good method of doing this

¢/> class Student:

def init (self, name, age):
self.name = name
self.age = age

¢/> studentl = Student ("Ian", 33)

studentl.age = -1

P [Before] studentl.age = 33

[After] studentl.age = -1

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

MODIFYING AN OBJECTS PROPERTIES (2)

¢ A better way of modifying a classes variable is by creating a function

¢/> class Student:

def init (self, name, age):
self.name = name
self.age = age

def change age(self, new age):

self.age = new_ age

¢/> studentl = Student ("Ian", 33)

studentl.change age (-1)

P [Before] studentl.age = 33
[After] studentl.age = -1

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

MODIFYING AN OBJECTS PROPERTIES (3)

e Variables and functions can be private inside a class
e This is achieved by adding two underscores (‘') to the beginning of the variable name

¢/> class Student:

def init (self, name, age):
self. name = name
self. age = age

def change age(self, new age):
self. age = new age
def get age(self):

return self. age

¢/> studentl = Student ("Ian", 33)

studentl.change age(-1)

P [Before] studentl.get age() = 33
[After] studentl.get age() = -1

Covent

Unlversr[rvy

MODIFYING AN OBJECTS PROPERTIES (4)

¢ Objects can be deleted by using the del keyword

<[> del studentl

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

PASS KEYWORD

e Classes cannot be empty, but if you require a class to be empty you can use the pass keyword

¢/> class Student:

pass

Coventrv 3 dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

INHERITANCE WITH CLASSES

¢ Inheritance allows you to define a class that will inherit all the functions and properties from another class
e There are two important terminologies to know:

o parent class which is the class from which another class is being inherited from

o child class which is the class that is inherited from the parent class

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

CREATING A PARENT CLASS

¢ Any class you create in Python can be a parent class
o the syntax is the same as creating any other class

¢/> class Student:

def init (self, name, age):
self. name = name
self. age = age

def change age(self, new age):
self. age = new age

def get age(self):
return self. age

def get name (self):
return self. name

def greeting(self):

return f"Hello {self. name} and welcome to 4061CEM!"

¢/> studentl = Student ("Ian", 33)

P studentl.get name() = Ian
studentl.get age() = 33
studentl.greeting() = Hello Ian and welcome to 4061CEM!

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

CREATING A CHILD CLASS

e A child class is created by passing through the parent class as parameter when creating the child class
o the child class will inherit all properties and functions of the parent class

<[> class Person (Student) :

pass

</> personl = Person("Ian", 33)

P personl.get name() Tan

Hello Ian and welcome to 4061CEM!

personl.greeting ()

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

MODIFYING A CHILD CLASS (1)

e When adding an __init__ function to the child class, it will no longer inheritthe _init__ function from the parent class
e To keep the variables from the parent class, we need to call the _init function from the parent class

<[> class Person (Student) :
def init (self, name, age, location):
Student. init (self, name, age)
self.location = location
</> personl = Person("Ian", 33, "Coventry")
P personl.get name() = Ian

personl.location = Coventry

Bﬁm%?stl \dﬁ/_&' 4061CEM - Programming and Algorithms 1

MODIFYING A CHILD CLASS (2)

e The same process can be achieved using the super() function, instead of using the parent classes hame

</> class Person (Student) :
def init (self, name, age, location):
super (). init (name, age)
self.location = location
</> personl = Person("Ian", 33, "Coventry")
P personl.get name() = Ian

personl.location = Coventry

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

ADDING A FUNCTION TO A CHILD CLASS

e Functions can be added to the child class in the same manner
o let’s add a function to greet the person and acknowledge where they have come from

<[> class Person (Student) :

def init (self, name, age, location):
super (). init (name, age)
self.location = location

def greeting(self):

return f"Hello {self.get name ()} and welcome to 4061CEM from {self.location}!"

</> personl = Person("Ian", 33, "Coventry")

P personl.greeting() = Hello Ian and welcome to 4061CEM from Coventry!

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

GOODBYE

e Questions?

o Post them in the Community Page on Aula
¢ Contact Details:

o Dr lan Cornelius, ab6459@coventry.ac.uk

mailto:ab6459@coventry.ac.uk

