Coventlrv N\

univers

FILE HANDLING

DR IAN CORNELIUS



Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

HELLO

e Learning Objectives
1. Understand how to handle multiple file types in Python
2. Demonstrate the ability to handle files of different types



Covent% ?_;_ d’“/_&' 4061CEM - Programming and Algorithms 1

universi

INTRODUCTION TO FILES

o Files are an object on a computer that stores either data, information, settings or commands
e They are great for:

o storing data permanently

o sharing of data between applications

o storing a huge amount of data




Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

TYPES OF FILES

e There are two file types:
o text: this is where data is stored in the form of strings
o i.e. .txt, .py, .cpp
o binary: this is where data is stored in the form of bytes
o i.e. .jpg, .gif, .png, .exe




Coventry ¢
AR

2D /ﬁ' 4061CEM - Programming and Algorithms 1

universi

OPENING A FILE (1)

¢ Files can be opened in Python using the open() function
e There are various opening modes:

Mode Definition

W writes data, if the file already exists then the data will be lost

r reads data, the cursor inside the file is positioned at the beginning

W+ writes and reads data, previous data in the file will be lost

r+ reads and writes data, previous data in the file will not be deleted, and the cursor inside the file is positioned at the beginning
a+ appends and reads data, the file cursor is positioned at the end of the file

X creates the specified file, or returns an error if the file exists



Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

OPENING A FILE (2)

¢ Files can also be specified if they should be handled in a binary or text mode using:
o t - for text mode (the default option)

o b - for binary mode

<[> exampleFile = open("filename.extension",

"W

")




Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

CLOSING A FILE

¢ Files are closed in Python using the close() function
e You must always call this function when you have finished using or processing a file

" A

<[> exampleFile = open("myfile.txt", "w")

exampleFile.write ("Hello 4061CEM")

exampleFile.close ()




Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

READING CONTENTS FROM A FILE

¢ Reading the contents of a file can be achieved in one of three ways:
o read(): will read all the lines and return them line-by-line
o read(n): will read n bytes from the file
o readlines(): will return all strings as elements in a list

<[> exampleFile = open ("myfile.txt")
strRead = exampleFile.read()
print (strRead)

exampleFile.close ()

P Traceback (most recent call last):
File "source.py", line 1, in <module>
exampleFile = open("myfile.txt")

FileNotFoundError: [Errno 2] No such file or directory: 'myfile.txt'’




Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

SETTING THE FILE CURSOR POSITION

o To read from a set position in a file, this can be achieved by using the seek() function
o the function will also return the new position once it has finished reading the line

<[> exampleFile = open ("myfile.txt")
exampleFile.seek (4)

print (exampleFile.read())

exampleFile.close ()

L,




Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

WRITING TO AN EXISTING FILE

o Writing content to an existing file can be used with the open() function and one of the following modes:
o a for append mode, which will append contents to the end of the file
o w for write mode, which will overwrite existing content

<[> exampleFile = open("myfile.txt", "w")

exampleFile.write ("Oops, I overwrote the content of the file.\n")

exampleFile.close ()




Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

USING THE witH KEYWORD

e Reading a file can be achieved using the with keyword
o a benefit is that it will take care of closing the file automatically
o therefore, no requirement to call the close() function

<[> with open('myfile.txt', 'w') as exampleFile:
exampleFile.write ("Hello 4061CEM\n")

exampleFile.write ("This is an exciting module.\n")

<[> with open('myfile.txt', 'r') as exampleFile:
for line in exampleFile:

print (1line)




Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

WORKING WITH DIRECTORIES (1)

o Working with directories and other files can be obtained by using the os module

CHECKING THE WORKING/ACTIVE DIRECTORY

e To determine the directory you are currently working inside can be achieved using the getcwd() function

<[> import os
currentDir = os.getcwd ()

print (f"Current working directory is: {currentDir}")

L




Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

WORKING WITH DIRECTORIES (2)
CREATING A DIRECTORY

¢ Creating a directory can be achieved using the mkdir () function

<[> import os

os.mkdir ("my directory")

e Using a forwards slash (“/”) in the string will create a subdirectory
o you must ensure that the top-level directory has already been created (“my_directory”)

¢/> os.mkdir ("my directory/sub directory")




Covent% ?_;_ d’“/_&' 4061CEM - Programming and Algorithms 1

universi

WORKING WITH DIRECTORIES (3)
DELETING A DIRECTORY

¢ A directory can be deleted by using the rmdir() function
o only empty directories can be deleted

<[> import os

os.rmdir ("my directory")




Covent% ?_;_ d’“/_&' 4061CEM - Programming and Algorithms 1

universi

WORKING WITH DIRECTORIES (4)
RENAMING A DIRECTORY

e The renaming of a directory can be achieved using the rename() function

<[> import os

os.rename ("my directory",

"a new name directory")




Coventrv GT/%{ 4061CEM - Programming and Algorithms 1

university ==

CHECKING IF A FILE EXISTS

e To check whether a file exists can be achieved using the isfile() function

¢/> import os
fileName = input ("Enter a Filename:")
if os.path.isfile(fileName) :
print ("File Exists")

else:

print ("File does not exist")




Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

DELETING A FILE

¢ Deleting a file can be achieved using the remove () function

¢/> import os

os.remove ("myfile.txt")




Coventrv : GT/%{ 4061CEM - Programming and Algorithms 1

university ==

DISPLAYING ALL CONTENTS OF A FOLDER

o To determine all folders and files of a directory can be achieved using the walk() function

¢/> import os
for dirPath, dirNames, filenames in os.walk('/"'):
print (f"Current Path: {dirPath}")

print (f"Directories: {dirNames}")

print (f"Files: {filenames}\n")




Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

RUNNING EXECUTABLES

e The os module also contains a system() function which is useful to run shell commands from within Python

¢/> import os
os.system('dir")

os.system('python3 sample script.py')




Coventrv : GT/%{ 4061CEM - Programming and Algorithms 1

university ==

HANDLING AND USING CSV FILES

csv is an abbreviation for Comma-Separated Values
The file extension for these types of files are .csv
Commonly used to store plain-text data

Uses a comma (“,”) to separate the values within a file, hence the name
o however, other characters can be used; such as a semi-colon (“;”)
Theory behind CSVs is to enable the exporting of data to a universal file type

o then be able to import the data back into an application




Coventry

.ty \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

STRUCTURE OF A CSV FILE (1)

e The first line of the file is considered to be the label, header or column name row
o these values are often used to refer to the data for a particular column
¢ An example layout of a csv file can be something such as:

name, age, course
Ian,33,Computer Science
Terry,Unknown,Computer Science
o The first line consisting of: name, age, course are the labels for each column of data

e Subsequent lines following this are the data, with a comma (“,”) separating each value for the columns




Coventry ¢
AR

2D /ﬁ' 4061CEM - Programming and Algorithms 1

universi

STRUCTURE OF A CSV FILE (2)

e You may picture the contents of a csv file as a table, for example:

name age course
lan 33 Computer Science
Terry Unknown

Computer Science



Coventry &«

.ty 0 /_&' 4061CEM - Programming and Algorithms 1

universi

READING A CSV FILE IN PYTHON (1)

e There are two methods of reading a CSV file:
o CSV
o DictReader

CcSv

e The csv module enables you to read the contents of a file

¢ Reads each line of the file and stores the data as a list
o each item in the row being an item in the list

¢ Not the most functional way of reading the contents of a CSV file
o does not utilise the labels or column headers of the file

DICTREADER

¢ An alternative method of reading a CSV file is using DictReader from the csv module
e Maps the content of the CSV file to a dictionary data type
¢ Provides a more useful method of importing data

o you can read the whole CSV file and only access elements you want




universi

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

READING A CSV FILE IN PYTHON (2)

METHOD 1 - csv EXAMPLE

<[> import csv

with open ("data.csv'",

print ("\n\n",

"r") as csvFile:

csvReader = csv.reader (csvFile, delimiter=",6"

for row in csvReader:

row)




universi

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

READING A CSV FILE IN PYTHON (3)

METHOD 2 - DICTREADER EXAMPLE |

<[> import csv

with open ("data.csv'",

print ("\n\n",

"r") as csvFile:

csvReader = csv.DictReader (csvFile)

for row in csvReader:

row)




Coventrv GT/%{ 4061CEM - Programming and Algorithms 1

university ==

READING A CSV FILE IN PYTHON (4)
METHQOD 2 - bIcTREADER EXAMPLE Il

« If you want to capture only the names in the file, you can adapt the code to be akin to:

<[> import csv
names = []
with open ("data.csv", "r") as csvFile:
csvReader = csv.DictReader (csvFile)
for row in csvReader:

names.append (row["name"])

print ("\n\n", names)




Coventry &«

.ty 0 /_&' 4061CEM - Programming and Algorithms 1

universi

WRITING TO A CSV FILE IN PYTHON (1)

e There are two methods of creating a CSV file:
O Csv

o DictWriter

CcSv

e The csv module also enables users to write to a CSV file
o i.e. you want to add a new row to the contents in the file already

DICTWRITER

¢ An alternative method to write to a file is the DictuWriter class
o Create a new dictionary object that has the details that you want to be written to the file
o good practice is to use the same labels/keys as those used in the csv file
e Then you can easily write the data to the file by just calling the dictionary object in writerow()




Coventry

.ty \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

WRITING TO A CSV FILE IN PYTHON (2)
METHOD 1 - csv EXAMPLE

<[> import csv
with open("data.csv", "a", newline='\n') as csvFile:
csvWWriter = csv.writer (csvFile, delimiter=",")

csviWriter.writerow(['Daniel', 'Unknown', 'Ethical Hacking and Cyber Security'])

name, age, course

Ian,33,Computer Science

Terry,Unknown,Computer Science

Daniel,Unknown, Ethical Hacking and Cyber Security




Coventry &«

.ty 0 /_&' 4061CEM - Programming and Algorithms 1

universi

WRITING TO A CSV FILE IN PYTHON (3)
METHOD 2 - DICTWRITER EXAMPLE

<[> import csv

aStudent = {"name": "Daniel",
"age": "Unknown",
"course": "Ethical Hacking and Cyber Security"}
with open ("data.csv", "a", newline='\n') as csvFile:
csvilriter = csv.DictWriter (csvFile, fieldnames=aStudent.keys())

csviWriter.writerow (aStudent)

name, age,course

Ian,33,Computer Science

Terry,Unknown,Computer Science
Daniel,Unknown,Ethical Hacking and Cyber Security




Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

GOODBYE

e Questions?

o Post them in the Community Page on Aula
¢ Contact Details:

o Dr lan Cornelius, ab6459@coventry.ac.uk


mailto:ab6459@coventry.ac.uk

