
FILE HANDLING
DR
IAN CORNELIUS

1

4061CEM - Programming and Algorithms 1

HELLO
Learning Objectives

1. Understand how to handle multiple file types in
Python
2. Demonstrate the ability to handle files of different
types

2

4061CEM - Programming and Algorithms 1

INTRODUCTION TO FILES
Files are an object on a computer that stores either
data, information, settings or commands
They are great for:

storing data permanently
sharing of data between applications
storing a huge amount of data

3
 .
1

4061CEM - Programming and Algorithms 1

TYPES OF FILES
There are two file types:

text: this is where data is stored in
the form of strings
i.e. .txt, .py,
.cpp

binary: this is where data is stored in
the form of bytes
i.e. .jpg, .gif,
.png, .exe

3
 .
2

4061CEM - Programming and Algorithms 1

OPENING A FILE (1)
Files can be opened in Python using the
open() function
There are various opening modes:

Mode Definition

w writes data, if the file
already exists then the data will be lost

r reads data, the cursor inside
the file is positioned at the beginning

w+ writes and reads data,
previous data in the file will be lost

r+ reads and writes data,
previous data in the file will not be deleted, and
the cursor inside the file is positioned at the
beginning

a+ appends and reads data, the
file cursor is positioned at the end of the file

x creates the specified file, or
returns an error if the file exists

3
 .
3

4061CEM - Programming and Algorithms 1

OPENING A FILE (2)
Files can also be specified if they should be handled in
a binary or text mode using:

t - for text mode (the default option)
b - for binary mode

exampleFile = open("filename.extension", "w")

3
 .
4

4061CEM - Programming and Algorithms 1

CLOSING A FILE
Files are closed in Python using the
close() function
You must always call this function when you have
finished using or processing a file

exampleFile = open("myfile.txt", "w")

exampleFile.write("Hello 4061CEM")

exampleFile.close()



3
 .
5

4061CEM - Programming and Algorithms 1

READING CONTENTS FROM A FILE
Reading the contents of a file can be achieved in one of
three ways:

read(): will read all the lines and return
them line-by-line
read(n): will read bytes from the file
readlines(): will return all strings as
elements in a list

n

exampleFile = open("myfile.txt")

strRead = exampleFile.read()

print(strRead)

exampleFile.close()



Traceback (most recent call last):

 File "source.py", line 1, in <module>

 exampleFile = open("myfile.txt")

FileNotFoundError: [Errno 2] No such file or directory: 'myfile.txt'



3
 .
6

4061CEM - Programming and Algorithms 1

SETTING THE FILE CURSOR POSITION
To read from a set position in a file, this can be
achieved by using the seek() function

the function will also return the new position once it
has finished reading the line

exampleFile = open("myfile.txt")

exampleFile.seek(4)

print(exampleFile.read())

exampleFile.close()





3
 .
7

4061CEM - Programming and Algorithms 1

WRITING TO AN EXISTING FILE
Writing content to an existing file can be used with the
open() function and one of the following modes:

a for append mode, which will append
contents to the end of the file
w for write mode, which will overwrite
existing content

exampleFile = open("myfile.txt", "w")

exampleFile.write("Oops, I overwrote the content of the file.\n")

exampleFile.close()



3
 .
8

4061CEM - Programming and Algorithms 1

USING THE WITH KEYWORD
Reading a file can be achieved using the
with keyword

a benefit is that it will take care of closing the file
automatically
therefore, no requirement to call the
close() function

with open('myfile.txt', 'w') as exampleFile:

 exampleFile.write("Hello 4061CEM\n")

 exampleFile.write("This is an exciting module.\n")



with open('myfile.txt', 'r') as exampleFile:

 for line in exampleFile:

 print(line)



3
 .
9

4061CEM - Programming and Algorithms 1

WORKING WITH DIRECTORIES (1)
Working with directories and other files can be obtained
by using the os module

CHECKING THE WORKING/ACTIVE DIRECTORY
To determine the directory you are currently working
inside can be achieved using the getcwd()
function

import os

currentDir = os.getcwd()

print(f"Current working directory is: {currentDir}")





4
 .
1

4061CEM - Programming and Algorithms 1

WORKING WITH DIRECTORIES (2)
CREATING A DIRECTORY

Creating a directory can be achieved using the
mkdir() function

Using a forwards slash (“/”) in the string
will create a subdirectory
you must ensure that the top-level directory
has already been created (“my_directory”)

import os

os.mkdir("my_directory")



os.mkdir("my_directory/sub_directory")

4
 .
2

4061CEM - Programming and Algorithms 1

WORKING WITH DIRECTORIES (3)
DELETING A DIRECTORY

A directory can be deleted by using the
rmdir() function
only empty directories can be deleted

import os

os.rmdir("my_directory")



4
 .
3

4061CEM - Programming and Algorithms 1

WORKING WITH DIRECTORIES (4)
RENAMING A DIRECTORY

The renaming of a directory can be achieved using the
rename() function

import os

os.rename("my_directory", "a_new_name_directory")



4
 .
4

4061CEM - Programming and Algorithms 1

CHECKING IF A FILE EXISTS
To check whether a file exists can be achieved using the
isfile() function

import os

fileName = input("Enter a Filename:")

if os.path.isfile(fileName):

 print("File Exists")

else:

 print("File does not exist")



4
 .
5

4061CEM - Programming and Algorithms 1

DELETING A FILE
Deleting a file can be achieved using the
remove() function

import os

os.remove("myfile.txt")



4
 .
6

4061CEM - Programming and Algorithms 1

DISPLAYING ALL CONTENTS OF A FOLDER
To determine all folders and files of a directory can be
achieved using the walk() function

import os

for dirPath, dirNames, filenames in os.walk('/'):

 print(f"Current Path: {dirPath}")

 print(f"Directories: {dirNames}")

 print(f"Files: {filenames}\n")



4
 .
7

4061CEM - Programming and Algorithms 1

RUNNING EXECUTABLES
The os module also contains a
system() function which is useful to run shell
commands from within Python

import os

os.system('dir')

os.system('python3 sample_script.py')



4
 .
8

4061CEM - Programming and Algorithms 1

HANDLING AND USING CSV FILES
csv is an abbreviation for
Comma-Separated
Values
The file extension for these types of files are
.csv
Commonly used to store plain-text data
Uses a comma (“,”) to separate the values
within a file, hence the name

however, other characters can be used; such as a
semi-colon (“;”)
Theory behind CSVs is to enable the exporting of data to
a universal file type

then be able to import the data back into an
application

5
 .
1

4061CEM - Programming and Algorithms 1

STRUCTURE OF A CSV FILE (1)
The first line of the file is considered to be the
label, header or column name row

these values are often used to refer to the data for a
particular column
An example layout of a csv file can be
something such as:

name,age,course

Ian,33,Computer Science

Terry,Unknown,Computer Science

The first line consisting of:
name, age, course are the labels for each
column of data
Subsequent lines following this are the data, with a
comma (“,”) separating each value for the
columns

5
 .
2

4061CEM - Programming and Algorithms 1

STRUCTURE OF A CSV FILE (2)
You may picture the contents of a csv file
as a table, for example:

name age course

Ian 33 Computer Science

Terry Unknown Computer Science

5
 .
3

4061CEM - Programming and Algorithms 1

READING A CSV FILE IN PYTHON (1)
There are two methods of reading a CSV file:

csv
DictReader

CSV
The csv module enables you to read the
contents of a file
Reads each line of the file and stores the data as a
list

each item in the row being an item in the list
Not the most functional way of reading the contents of a
CSV file

does not utilise the labels or column headers of the
file

DICTREADER
An alternative method of reading a CSV file is using
DictReader from the csv
module
Maps the content of the CSV file to a dictionary data
type
Provides a more useful method of importing data

you can read the whole CSV file and only access elements
you want

5
 .
4

4061CEM - Programming and Algorithms 1

READING A CSV FILE IN PYTHON (2)
METHOD 1 - CSV
EXAMPLE

import csv

with open("data.csv", "r") as csvFile:

 csvReader = csv.reader(csvFile, delimiter=",")

 for row in csvReader:

 print("\n\n", row)





5
 .
5

4061CEM - Programming and Algorithms 1

READING A CSV FILE IN PYTHON (3)
METHOD 2 -
DICTREADER EXAMPLE I

import csv

with open("data.csv", "r") as csvFile:

 csvReader = csv.DictReader(csvFile)

 for row in csvReader:

 print("\n\n", row)





5
 .
6

4061CEM - Programming and Algorithms 1

READING A CSV FILE IN PYTHON (4)
METHOD 2 -
DICTREADER EXAMPLE II

If you want to capture only the names in the file, you
can adapt the code to be akin to:

import csv

names = []

with open("data.csv", "r") as csvFile:

 csvReader = csv.DictReader(csvFile)

 for row in csvReader:

 names.append(row["name"])

print("\n\n", names)





5
 .
7

4061CEM - Programming and Algorithms 1

WRITING TO A CSV FILE IN PYTHON (1)
There are two methods of creating a CSV file:

csv

DictWriter

CSV
The csv module also enables users to write
to a CSV file

i.e. you want to add a new row to the contents in the
file already

DICTWRITER
An alternative method to write to a file is the
DictWriter class
Create a new dictionary object that has the details that
you want to be written to the file

good practice is to use the same labels/keys as those
used in the csv file
Then you can easily write the data to the file by just
calling the dictionary object in
writerow()

5
 .
8

4061CEM - Programming and Algorithms 1

WRITING TO A CSV FILE IN PYTHON (2)
METHOD 1 -
CSV EXAMPLE

name,age,course

Ian,33,Computer Science

Terry,Unknown,Computer Science

Daniel,Unknown,Ethical Hacking and Cyber Security

import csv

with open("data.csv", "a", newline='\n') as csvFile:

 csvWriter = csv.writer(csvFile, delimiter=",")

 csvWriter.writerow(['Daniel', 'Unknown', 'Ethical Hacking and Cyber Security'])



5
 .
9

4061CEM - Programming and Algorithms 1

WRITING TO A CSV FILE IN PYTHON (3)
METHOD 2 -
DICTWRITER EXAMPLE

name,age,course

Ian,33,Computer Science

Terry,Unknown,Computer Science

Daniel,Unknown,Ethical Hacking and Cyber Security

import csv

aStudent = {"name": "Daniel",

 "age": "Unknown",

 "course": "Ethical Hacking and Cyber Security"}

with open("data.csv", "a", newline='\n') as csvFile:

 csvWriter = csv.DictWriter(csvFile, fieldnames=aStudent.keys())

 csvWriter.writerow(aStudent)



5
 .
10

4061CEM - Programming and Algorithms 1

GOODBYE
Questions?

Post them in the Community Page on
Aula
Contact Details:

Dr Ian Cornelius, ab6459@coventry.ac.uk

6

4061CEM - Programming and Algorithms 1

mailto:ab6459@coventry.ac.uk

