Coventry &2

university ==

CONTROL STATEMENTS

DR IAN CORNELIUS



Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

HELLO

e Learning Objectives
1. Understand what a control statement is
2. Demonstrate the ability to use control statements



Covent% :.:__ dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

INTRODUCTION TO CONTROL STATEMENTS

o Typically, statements in code will be executed sequentially
e There are some situations which requires a block of code to be repeated
o i.e. summing numbers, entering multiple data points, capturing user input
e Control statements, otherwise known as loop statements are required
e Python have two loop structures:
o while - conditional loops
o for - counter controlled loops




Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

STRUCTURE OF A LOOP

e Loop structures can be likened to a conditional statement
o they run on a True or False set of values
o the loop will continuously loop until the condition is True
o the loop will terminate when the condition is False
e Loops can run for a desired length of time
o or until a user-defined flag terminates it
e Loops are great for re-using code
o limiting the number of statements that are required
o re-uses the same conditional arguments for testing instead of hundreds




Coventry

.ty \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

WHILE LOOP S

TATEMENTS (1)

e while loops, are loops that will execute zero or more times before it is terminated

e The while loop structure:

¢/> while variable < value:

variable += 1

¢ [f you are doing an incremental loop, you need to manually increase the variable

o hence the variable += 1




Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

WHILE LOOP STATEMENTS (2)

e Initially x is @ and the loop will increment x for each iteration
e This is repeated until x < 10

<> x =0
while x < 10:
print (x, end=" ")

x += 1

P 0123456789




Covent% ?_;_ d’“/_&' 4061CEM - Programming and Algorithms 1

universi

WHILE LOOP WITH A BREAK STATEMENT (1)

e break statements can be used to stop the loop if a condition is evaluated to True

<[> x =0
while x < 10:
print (x, end=" ")
if x == 5:
break

x += 1

P 012345




Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

WHILE LOOP WITH A BREAK STATEMENT (2)

« Infinite loops can be constructed by using a True value after the while keyword
o Will continue incrementing x until it reaches a certain value

o in this instance x must be equal to 10
o If there is no condition to check in the loop it will continue incrementing

<> x =0
while True:
print (x, end=" ")
if x == 20:
break

x += 1

P 01 234567891011 12 13 14 15 16 17 18 19 20




Coventrv GT/%{ 4061CEM - Programming and Algorithms 1

university ==

WHILE LOOP WITH CONTINUE STATEMENT

e continue statements can stop the current iteration and continue onto the next

<[> x =0
while x < 10:
x += 1
if x == 5:
continue

print (x, end=" ")

P 1234678910




Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

WHILE LOOP WITH AN ELSE STATEMENT

e clse statements can be used to executee a block of code when a condition has been met
o that is the condition is no longer True

<> x =0
while x < 10:
print (x, end=" ")
x += 1

else:

print ("\n\nx is no longer less than 10")

P 01234567809

x 1s no longer less than 10




Coventry &«

.ty 0 /_&' 4061CEM - Programming and Algorithms 1

universi

FOR LOOP STATEMENTS

A for loop is a loop that is designed to increment a counter over a given range of values
They are best suited for problems that need to iterate a specific number of times
o i.e. looping through a directory or set of files
Considered to be a pre-test loop
o they check their condition before execution
for loops are useful because...

o they know the number of times a loop should be iterated
o they use a counter
o require a False condition to terminate the loop




Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

LOOP STRUCTURE (1)

e The structure of a for loop consists of the following:
1. Initialisation of a counter
2. Test the counter variable:
a. less than: start < stop
b. greater than: start > stop
3. Update the counter variable

<[> for variable in range(x, y, step):




Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

LOOP STRUCTURE (2)

e for loops can also be iterated forwards by using a positive step value

¢/> for x in range(l, 10, 1):

print (x, end=" ")

P 1234567809




Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

LOOP STRUCTURE (2)

e for loops can also be iterated backwards by using a negative step value

¢/> for x in range (10, 1, -1):

print (x, end=" ")

P 10987654 32




Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

NESTED LOOPS

e These are loops that are located inside the body of another loop
o consist of an inner (inside) and outer (outside) loops

<[> for i in range(l, 4, 1):
print (f"Iteration {i}: ")
for 7 in range(l, 4, 1):
print (i * j, end=" ")

print ("\n\n\n")

p Iteration 1: 1 2 3
Iteration 2: 2 4 6
Iteration 3: 3 6 9

e The inner loop will go through all the repetitions for each repetition of the outside loop
o the inner loop repetitions will complete sooner than the outside
o Nested loops are necessary for when a task performs a repetitive operation, and that task itself needs to be repeated




Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

LOOPING THROUGH OBJECTS (1)

e for loops are great for looping through various objects:
o i.e. strings, lists, tuples or dictionaries

STRINGS

o Strings are iterable, as they consist of a sequence of characters

<[> title = "4061CEM"
for letter in title:

print (letter, end=" ")

P 4061 CEM




Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

LOOPING THROUGH OBJECTS (2)
LISTS

o Lists are also iterable, as such they can be looped through

<[> module = [4061, "Programming and Algorithms", "Ian Cornelius"]
for item in module:

print ("\n\n", item)

p 4061
Programming and Algorithms

Tan Cornelius




Bﬁ?{,%pgﬁry J_:_- d"‘/_&' 4061CEM - Programming and Algorithms 1

LOOPING THROUGH OBJECTS (3)
DICTIONARIES (1)

¢ Dictionaries are also iterable, but can be looped through in a variety of ways

ITEMS OF A DICTIONARY

¢ Returns the key and value of each item in a dictionary

<[> module = {"code": 4061,
"title": "Programming and Algorithms",
"leader": "Ian Cornelius"}

for key, value in module.items () :

print ("\n\n", key, "=", value)

P code = 4061

title = Programming and Algorithms

leader = TIan Cornelius




Coventry &«

.ty 0 /_&' 4061CEM - Programming and Algorithms 1

universi

LOOPING THROUGH OBJECTS (4)

DICTIONARIES (Il)
BY A KEY OF THE DICTIONARY

o Returns the key of a dictionary, which can be used to access the item in a dictionary

<[> module = {"code": 4061,

"leader": "Ian Cornelius"}
for key in module.keys():

print ("\n\n", key, "=", modulelkey])

"title": "Programming and Algorithms",

p code = 4061

title = Programming and Algorithms

leader = TIan Cornelius




Coventry &«

.ty 0 /_&' 4061CEM - Programming and Algorithms 1

universi

LOOPING THROUGH OBJECTS (5)

DICTIONARIES (lll)
VALUES OF A DICTIONARY

e Returns all values in the dictionary, but not the key associated to it

<[> module = {"code": 4061,

"title": "Programming and Algorithms",
"leader": "Ian Cornelius"}

for v in module.values() :

print ("\n\n", v)

p 4061

Programming and Algorithms

Tan Cornelius




Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

LOOPING THROUGH OBJECTS (6)
DICTIONARIES AND LISTS

<[> module = {"code": 4061,

"title": "Programming and Algorithms",
"leader": "Ian Cornelius",
"team": ["Terry Richards", "Daniel Goldsmith"]}

for key in module.keys () :

if type (modulelkey]) != list:

print ("\n\n", key, ":", modulelkey])
else:

print ("\n", key, ":", end=" ")

for i in range (len (modulel[key])) :

print ('\t', modulelkey][i], end=" ")

p code : 4061
title : Programming and Algorithms
leader : Ian Cornelius

team : Terry Richards Daniel Goldsmith




Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

INFINITE LOOPS

e Loops must have a way of terminating, otherwise the loop will continue to repeat until it is manually interrupted
e Infinite loops can occur when you forget to write code inside the loop to terminate the loop

o i.e. there is no condition for a boolean expression to evaluate to False
e You must remember to include some condition to break out of a loop

<> x =1
while x ==
y = input ("Enter a number: ")

print (f"The number you entered is {y}!")

<> x =1
while x == 1:
y = input ("Enter a number (Type 'gq' to quit): ")
if vy == 'q':
break

print (f"The number you entered is {y}!")




Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

GOODBYE

e Questions?

o Post them in the Community Page on Aula
¢ Contact Details:

o Dr lan Cornelius, ab6459@coventry.ac.uk


mailto:ab6459@coventry.ac.uk

