
CONTROL STATEMENTS
DR
IAN CORNELIUS

1

4061CEM - Programming and Algorithms 1



HELLO
Learning Objectives

1. Understand what a control statement is
2. Demonstrate the ability to use control statements

2

4061CEM - Programming and Algorithms 1



INTRODUCTION TO CONTROL STATEMENTS
Typically, statements in code will be executed
sequentially
There are some situations which requires a block of code
to be repeated

i.e. summing numbers, entering multiple data points,
capturing user input
Control statements, otherwise known as loop
statements are required
Python have two loop structures:

while - conditional loops
for - counter controlled loops

3
 . 
1

4061CEM - Programming and Algorithms 1



STRUCTURE OF A LOOP
Loop structures can be likened to a conditional
statement

they run on a True or False
set of values
the loop will continuously loop until the condition is
True
the loop will terminate when the condition is
False

Loops can run for a desired length of time
or until a user-defined flag terminates it

Loops are great for re-using code
limiting the number of statements that are required
re-uses the same conditional arguments for testing
instead of hundreds

3
 . 
2

4061CEM - Programming and Algorithms 1



WHILE LOOP STATEMENTS (1)
while loops, are loops that will execute
zero or more times before it is terminated
The while loop structure:

If you are doing an incremental loop, you need to
manually increase the variable
hence the variable += 1

while variable < value:


    ...


    variable += 1



4
 . 
1

4061CEM - Programming and Algorithms 1



WHILE LOOP STATEMENTS (2)
Initially x is 0 and the loop
will increment x for each iteration
This is repeated until x < 10

x = 0


while x < 10:


    print(x, end=" ")


    x += 1



0 1 2 3 4 5 6 7 8 9

4
 . 
2

4061CEM - Programming and Algorithms 1



WHILE LOOP WITH A BREAK STATEMENT (1)
break statements can be used to stop the
loop if a condition is evaluated to True

x = 0


while x < 10:


    print(x, end=" ")


    if x == 5:


        break


    x += 1



0 1 2 3 4 5

4
 . 
3

4061CEM - Programming and Algorithms 1



WHILE LOOP WITH A BREAK STATEMENT (2)
Infinite loops can be constructed by using a
True value after the while
keyword
Will continue incrementing x until it
reaches a certain value

in this instance x must be equal to
10
If there is no condition to check in the loop it will
continue incrementing

x = 0


while True:


    print(x, end=" ")


    if x == 20:


        break


    x += 1



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4
 . 
4

4061CEM - Programming and Algorithms 1



WHILE LOOP WITH CONTINUE STATEMENT
continue statements can stop the current
iteration and continue onto the next

x = 0


while x < 10:


    x += 1


    if x == 5:


        continue


    print(x, end=" ")



1 2 3 4 6 7 8 9 10

4
 . 
5

4061CEM - Programming and Algorithms 1



WHILE LOOP WITH AN ELSE STATEMENT
else statements can be used to executee a
block of code when a condition has been met

that is the condition is no longer
True

x = 0


while x < 10:


    print(x, end=" ")


    x += 1


else:


    print("\n\nx is no longer less than 10")



0 1 2 3 4 5 6 7 8 9

x is no longer less than 10



4
 . 
6

4061CEM - Programming and Algorithms 1



FOR LOOP STATEMENTS
A for loop is a loop that is designed to
increment a counter over a given range of values
They are best suited for problems that need to iterate a
specific number of times

i.e. looping through a directory or set of files
Considered to be a pre-test loop

they check their condition before execution
for loops are useful because…

they know the number of times a loop should be
iterated
they use a counter
require a False condition to terminate the
loop

5
 . 
1

4061CEM - Programming and Algorithms 1



LOOP STRUCTURE (1)
The structure of a for loop consists of the
following:

1. Initialisation of a counter
2. Test the counter variable:

a. less than: start < stop
b. greater than: start > stop

3. Update the counter variable

for variable in range(x, y, step):


    ...



5
 . 
2

4061CEM - Programming and Algorithms 1



LOOP STRUCTURE (2)
for loops can also be iterated forwards by
using a positive step value

for x in range(1, 10, 1):


    print(x, end=" ")



1 2 3 4 5 6 7 8 9

5
 . 
3

4061CEM - Programming and Algorithms 1



LOOP STRUCTURE (2)
for loops can also be iterated backwards by
using a negative step value

for x in range(10, 1, -1):


    print(x, end=" ")



10 9 8 7 6 5 4 3 2

5
 . 
4

4061CEM - Programming and Algorithms 1



NESTED LOOPS
These are loops that are located inside the body of
another loop

consist of an inner (inside) and outer (outside)
loops

The inner loop will go through all the repetitions for
each repetition of the outside loop
the inner loop repetitions will complete sooner than the
outside

Nested loops are necessary for when a task performs a
repetitive operation, and that task itself needs to be
repeated

for i in range(1, 4, 1):


    print(f"Iteration {i}: ")


    for j in range(1, 4, 1):


        print(i * j, end=" ")


    print("\n\n\n")



Iteration 1: 1 2 3

Iteration 2: 2 4 6

Iteration 3: 3 6 9



5
 . 
5

4061CEM - Programming and Algorithms 1



LOOPING THROUGH OBJECTS (1)
for loops are great for looping through
various objects:

i.e. strings, lists, tuples or dictionaries

STRINGS
Strings are iterable, as they consist of a sequence of
characters

title = "4061CEM"


for letter in title:


    print(letter, end=" ")



4 0 6 1 C E M

5
 . 
6

4061CEM - Programming and Algorithms 1



LOOPING THROUGH OBJECTS (2)
LISTS

Lists are also iterable, as such they can be looped
through

module = [4061, "Programming and Algorithms", "Ian Cornelius"]


for item in module:


    print("\n\n", item)



4061

Programming and Algorithms

Ian Cornelius



5
 . 
7

4061CEM - Programming and Algorithms 1



LOOPING THROUGH OBJECTS (3)
DICTIONARIES (I)

Dictionaries are also iterable, but can be looped
through in a variety of ways

ITEMS OF A DICTIONARY
Returns the key and value of each item in a
dictionary

module = {"code": 4061,


          "title": "Programming and Algorithms",


          "leader": "Ian Cornelius"}


for key, value in module.items():


    print("\n\n", key, "=", value)



code = 4061

title = Programming and Algorithms

leader = Ian Cornelius



5
 . 
8

4061CEM - Programming and Algorithms 1



LOOPING THROUGH OBJECTS (4)
DICTIONARIES (II)
BY A KEY OF THE
DICTIONARY

Returns the key of a dictionary, which can be used to
access the item in a dictionary

module = {"code": 4061,


          "title": "Programming and Algorithms",


          "leader": "Ian Cornelius"}


for key in module.keys():


    print("\n\n", key, "=", module[key])



code = 4061

title = Programming and Algorithms

leader = Ian Cornelius



5
 . 
9

4061CEM - Programming and Algorithms 1



LOOPING THROUGH OBJECTS (5)
DICTIONARIES (III)
VALUES OF A DICTIONARY

Returns all values in the dictionary, but not the key
associated to it

module = {"code": 4061,


          "title": "Programming and Algorithms",


          "leader": "Ian Cornelius"}


for v in module.values():


    print("\n\n", v)



4061

Programming and Algorithms

Ian Cornelius



5
 . 
10

4061CEM - Programming and Algorithms 1



LOOPING THROUGH OBJECTS (6)
DICTIONARIES AND LISTS

module = {"code": 4061,


          "title": "Programming and Algorithms",


          "leader": "Ian Cornelius",


          "team": ["Terry Richards", "Daniel Goldsmith"]}


for key in module.keys():


    if type(module[key]) != list:


        print("\n\n", key, ":",  module[key])


    else:


        print("\n", key, ":", end=" ")


        for i in range(len(module[key])):

            print('\t', module[key][i], end=" ")



code : 4061

title : Programming and Algorithms

leader : Ian Cornelius

team : Terry Richards Daniel Goldsmith



5
 . 
11

4061CEM - Programming and Algorithms 1



INFINITE LOOPS
Loops must have a way of terminating, otherwise the loop
will continue to repeat until it is manually
interrupted
Infinite loops can occur when you forget to write code
inside the loop to terminate the loop

i.e. there is no condition for a boolean
expression to evaluate to False
You must remember to include some condition to break out
of a loop

x = 1


while x == 1:


    y = input("Enter a number: ")


    print(f"The number you entered is {y}!")



x = 1


while x == 1:


    y = input("Enter a number (Type 'q' to quit): ")


    if y == 'q':


        break


    print(f"The number you entered is {y}!")



5
 . 
12

4061CEM - Programming and Algorithms 1



GOODBYE
Questions?

Post them in the Community Page on
Aula
Contact Details:

Dr Ian Cornelius, ab6459@coventry.ac.uk

6

4061CEM - Programming and Algorithms 1

mailto:ab6459@coventry.ac.uk

