
FUNCTIONS
DR IAN CORNELIUS

1

4061CEM - Programming and Algorithms 1

HELLO
Learning Objectives

1. Understand the purpose of functions in Python
2. Under the difference between parameters and arguments
3. Demonstrate the ability to use functions

2

4061CEM - Programming and Algorithms 1

INTRODUCING PYTHON FUNCTIONS
Functions are a block of reusable code that are used to perform a single action
They provide an aspect of modularity to your code and ensures a high-degree of code reuse

3 . 1

4061CEM - Programming and Algorithms 1

CREATING A FUNCTION
Functions in Python begin with the def keyword followed by a function name and brackets (“()”)
The code within the function then starts with after the colon (“:”) at the end of the brackets, and is indented once

def function_name():

 print("Hello 4061CEM")

3 . 2

4061CEM - Programming and Algorithms 1

USING A FUNCTION
Functions can be called using their function name, followed by a set of brackets

this is often known as the function caller

def function_name():

 print("Hello 4061CEM")

function_name()

function_name() –> Hello 4061CEM▶

3 . 3

4061CEM - Programming and Algorithms 1

RETURNING A VALUE FROM A FUNCTION
Functions can also return data from inside it using the return statement
Useful if you have performed some operations inside a function and need to use the output

You may want to store the returned value from a function in a variable, or print it to the terminal

def my_sum():

 x = 2

 return 5 + x

my_sum()

my_sum() –> 7▶

summed = my_sum()

print(my_sum())

3 . 4

4061CEM - Programming and Algorithms 1

EMPTY FUNCTIONS (1)
The purpose of a function is to have some re-usable code, therefore they cannot be empty

if you insist on having a function with no code, then you can use the pass statement

def my_function():

 pass

3 . 5

4061CEM - Programming and Algorithms 1

EMPTY FUNCTIONS (2)
Empty functions offers to purpose or use; unless it is a placeholder for future code

in this instance, you would want it to raise a warning, such as: NotImplemented

def my_function():

 return NotImplemented

3 . 6

4061CEM - Programming and Algorithms 1

PARAMETERS AND ARGUMENTS
Data can be passed through to a function and these are known as either parameters or arguments
Parameter and argument can be used for the same thing

simply it is data that is passed into a function
But they do have a slightly different meaning:

parameter is the variable listed inside the brackets in the function definition
argument is the value that is sent to the function

4 . 1

4061CEM - Programming and Algorithms 1

PARAMETER AND ARGUMENT EXAMPLE
Parameters/arguments are specified after the declaration of the function name and inside the brackets

you are able to add as many parameters/arguments as you want, separating them with a comma (,)

def hello_person(name):

 print("Hello " + name + " and welcome to 4061CEM")

hello_person("Ian")

hello_person("Terry")

hello_person("Daniel")

hello_person(“Ian”) –> Hello Ian and welcome to 4061CEM

hello_person(“Terry”) –> Hello Terry and welcome to 4061CEM

hello_person(“Daniel”) –> Hello Daniel and welcome to 4061CEM

▶

4 . 2

4061CEM - Programming and Algorithms 1

PASSING ARGUMENTS TO FUNCTIONS (1)
There are two ways of passing arguments to a function: pass by value or pass by reference

PASS BY VALUE
The function creates a copy of the variable passed to it as an argument

the actual variable itself is not affected

x = 10

def change_int(x):

 x = 20

change_int(x)

Before Function Call: x = 10 [Address = 2313581363728]

Inside Function: x = 20 [Address = 2313581364048]

After Function Call: x = 10 [Address = 2313581363728]

▶

4 . 3

4061CEM - Programming and Algorithms 1

PASSING ARGUMENTS TO FUNCTIONS (2)
PASS BY REFERENCE

The actual variable is passed to the called function
changes made to the variable inside the function will affect the original value

x = [4, 0, 6, 1]

def change_value(_list):

 _list[1] = -9

change_value(x)

Before Function Call: x = [4, 0, 6, 1] [Address = 2313582751296]

Inside Function: _list = [4, -9, 6, 1] [Address = 2313582751296]

After Function Call: x = [4, -9, 6, 1] [Address = 2313582751296]

▶

4 . 4

4061CEM - Programming and Algorithms 1

NUMBER OF ARGUMENTS
When calling a function, it must be called with the correct number of arguments

if you have a function with three arguments then you have to call the function with three arguments

def hello_person(name, code):

 print(f"Hello {name} and welcome to {code}!")

hello_person("Ian", "4061CEM")

hello_person("Terry", "4059CEM")

hello_person(“Ian”, “4061CEM”) –> Hello Ian and welcome to 4061CEM!

hello_person(“Terry”, “4059CEM”) –> Hello Terry and welcome to 4059CEM!

▶

4 . 5

4061CEM - Programming and Algorithms 1

DEFAULT PARAMETER VALUES
A function can be called without an argument if a default value has been assigned to the parameter
The default value will only be evaluated once and makes a difference when the default value is a mutable object

i.e. a list, dictionary or an instance of most classes

def hello_person(name="Ian", code="4061CEM"):

 print(f"Hello {name} and welcome to {code}!")

hello_person()

hello_person(name="Terry", code="4059CEM")

hello_person("Daniel")

hello_person() –> Hello Ian and welcome to 4061CEM!

hello_person(name=“Terry”, code=“4059CEM”) –> Hello Terry and welcome to 4059CEM!

hello_person(“Daniel”) –> Hello Daniel and welcome to 4061CEM!

▶

4 . 6

4061CEM - Programming and Algorithms 1

KEYWORD ARGUMENTS
Keyword arguments are related to the function calls
When they are used in a function call, the caller identifies the arguments by its parameter name

the notation of using this method is: parameter = value
when used in a function call, the order of arguments do not matter

def hello_person(code, name):

 print("Hello " + name + " and welcome to " + code + "!")

hello_person(name="Ian", code="4061CEM")

hello_person(code="4059CEM", name="Terry")

hello_person(name=“Ian”, code=“4061CEM”) –> Hello Ian and welcome to 4061CEM!

hello_person(code=“4059CEM”, name=“Terry”) –> Hello Terry and welcome to 4059CEM!

▶

4 . 7

4061CEM - Programming and Algorithms 1

ARBITRARY ARGUMENTS
When you do not know the number of arguments that will be passed into a function, add an asterisk (*) before the parameter name
The function will then receive a tuple of arguments and access the items accordingly

the tuple will remain empty if no arguments are passed through

def hello_person(*details):

 print("Hello " + details[0] + " and welcome to " + details[1] + "!")

hello_person("Ian", "4061CEM")

hello_person("Terry", "4059CEM")

hello_person(“Ian”, “4061CEM”) –> Hello Ian and welcome to 4061CEM!

hello_person(“Terry”, “4059CEM”) –> Hello Terry and welcome to 4059CEM!

▶

4 . 8

4061CEM - Programming and Algorithms 1

ARBITRARY KEYWORD ARGUMENTS
When you do not know the number of keyword arguments that will be passed into a function, add a double asterisk (**) before the parameter name
The function will receive a dictionary of arguments and access the items accordingly

def hello_person(**details):

 print("Hello " + details['name'] + " and welcome to " + details['code'] + "!")

hello_person(name="Ian", code="4061CEM")

hello_person(code="4059CEM", name="Terry")

hello_person(name=“Ian”, code=“4061CEM”) –> Hello Ian and welcome to 4061CEM!

hello_person(code=“4059CEM”, name=“Terry”) –> Hello Terry and welcome to 4059CEM!

hello_person(name=“Ian”, code=“4061CEM”) –> Hello Ian and welcome to 4061CEM!

hello_person(code=“4059CEM”, name=“Terry”) –> Hello Terry and welcome to 4059CEM!

▶

4 . 9

4061CEM - Programming and Algorithms 1

FUNCTION ANNOTATIONS
Function annotations are optional metadata information about the various data types used by user-defined functions

these annotations are stored in the __annotations__ attribute of a function
Annotations for a parameter are defined with a colon (:) after the name of the parameter
Annotations for a return are defined by a -> followed by the data type

this is placed between the list of parameters and the colon denoting the end of the def statement

def my_sum(x: int) -> int:

 return 5 + x

print(my_sum.__annotations__)

{‘x’: <class ‘int’>, ‘return’: <class ‘int’>}▶

4 . 10

4061CEM - Programming and Algorithms 1

GOODBYE
Questions?

Post them in the Community Page on Aula
Contact Details:

Dr Ian Cornelius, ab6459@coventry.ac.uk

5

4061CEM - Programming and Algorithms 1

mailto:ab6459@coventry.ac.uk

