Covent

Unlversr[rvy

FUNCTIONS

DR IAN CORNELIUS

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

HELLO

e Learning Objectives
1. Understand the purpose of functions in Python
2. Under the difference between parameters and arguments
3. Demonstrate the ability to use functions

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

INTRODUCING PYTHON FUNCTIONS

e Functions are a block of reusable code that are used to perform a single action
e They provide an aspect of modularity to your code and ensures a high-degree of code reuse

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

CREATING A FUNCTION

e Functions in Python begin with the def keyword followed by a function name and brackets (“()”)

(13t

e The code within the function then starts with after the colon (“:”) at the end of the brackets, and is indented once

¢/> def function name () :

print ("Hello 4061CEM")

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

USING A FUNCTION

e Functions can be called using their function name, followed by a set of brackets
o this is often known as the function caller

¢/> def function name () :

print ("Hello 4061CEM")

¢/> function name ()

P function name() -> Hello 4061CEM

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

RETURNING A VALUE FROM A FUNCTION

e Functions can also return data from inside it using the return statement
o Useful if you have performed some operations inside a function and need to use the output

<[> def my sum():
X = 2

return 5 + x

<[> my sum()

P my sum() —> 7

e You may want to store the returned value from a function in a variable, or print it to the terminal

¢/> summed = my sum/()

print (my sum())

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

EMPTY FUNCTIONS (1)

e The purpose of a function is to have some re-usable code, therefore they cannot be empty
o if you insist on having a function with no code, then you can use the pass statement

¢/> def my function():

pass

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

EMPTY FUNCTIONS (2)

o Empty functions offers to purpose or use; unless it is a placeholder for future code
o in this instance, you would want it to raise a warning, such as: NotImplemented

¢/> def my function():

return NotImplemented

Coventrv 3 dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

PARAMETERS AND ARGUMENTS

e Data can be passed through to a function and these are known as either parameters or arguments
e Parameter and argument can be used for the same thing

o simply it is data that is passed into a function
e But they do have a slightly different meaning:

o parameter is the variable listed inside the brackets in the function definition

o argument is the value that is sent to the function

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

PARAMETER AND ARGUMENT EXAMPLE

o Parameters/arguments are specified after the declaration of the function name and inside the brackets
o you are able to add as many parameters/arguments as you want, separating them with a comma (,)

</> def hello person(name) :

print ("Hello " + name + " and welcome to 4061CEM")

¢/> hello person("Ian")
hello person ("Terry")

hello person("Daniel")

P hello person(“Ian”) -> Hello Ian and welcome to 4061CEM
hello person (“Terry”) —-> Hello Terry and welcome to 4061CEM

hello person(“Daniel”) -> Hello Daniel and welcome to 4061CEM

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

PASSING ARGUMENTS TO FUNCTIONS (1)

e There are two ways of passing arguments to a function: pass by value or pass by reference

PASS BY VALUE

e The function creates a copy of the variable passed to it as an argument
o the actual variable itself is not affected

<[> x = 10
def change int (x):
x = 20

¢</> change_ int (x)

P Before Function Call: x = 10 [Address = 2313581363728]
Inside Function: x = 20 [Address = 2313581364048]
After Function Call: x = 10 [Address = 2313581363728]

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

PASSING ARGUMENTS TO FUNCTIONS (2)
PASS BY REFERENCE

e The actual variable is passed to the called function
o changes made to the variable inside the function will affect the original value

</> X = [4, OI 6! 1]
def change value(list):

list[1] = -9

¢/> change value (x)

p Before Function Call: x = [4, 0, 6, 1] [Address = 2313582751296]
Inside Function: 1list = [4, -9, 6, 1] [Address = 2313582751296]
After Function Call: x = [4, -9, 6, 1] [Address = 2313582751296]

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

NUMBER OF ARGUMENTS

e When calling a function, it must be called with the correct number of arguments
o if you have a function with three arguments then you have to call the function with three arguments

</> def hello person(name, code):

print (f"Hello {name} and welcome to {code}!")

</> hello person("Ian", "4061CEM")
hello person("Terry", "4059CEM")

» hello person(“Ian”, “4061CEM”) -> Hello Ian and welcome to 4061CEM!
hello person (“Terry”, “4059CEM”) -> Hello Terry and welcome to 4059CEM!

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

DEFAULT PARAMETER VALUES

¢ A function can be called without an argument if a default value has been assigned to the parameter
e The default value will only be evaluated once and makes a difference when the default value is a mutable object
o i.e. a list, dictionary or an instance of most classes

</> def hello person(name="Ian", code="4061CEM") :

print (f"Hello {name} and welcome to {code}!")

¢/> hello person/()
hello person(name="Terry", code="4059CEM")

hello person ("Daniel")

P hello person() —-> Hello Ian and welcome to 4061CEM!
hello person (name="“"Terry”, code=%"4059CEM”) -> Hello Terry and welcome to 4059CEM!

hello person(“Daniel”) -> Hello Daniel and welcome to 4061CEM!

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

KEYWORD ARGUMENTS

o Keyword arguments are related to the function calls

e When they are used in a function call, the caller identifies the arguments by its parameter name
o the notation of using this method is: parameter = value
o when used in a function call, the order of arguments do not matter

</> def hello person(code, name) :

print ("Hello " + name + " and welcome to " + code + "!")

</> hello person(name="Ian", code="4061CEM")

hello person (code="4059CEM", name="Terry")

P hello person(name=%“Ian”, code="“4061CEM”) -> Hello Ian and welcome to 4061CEM!

hello person(code="4059CEM”, name="“"Terry”) —-> Hello Terry and welcome to 4059CEM!

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

ARBITRARY ARGUMENTS

e When you do not know the number of arguments that will be passed into a function, add an asterisk (*) before the parameter name
e The function will then receive a tuple of arguments and access the items accordingly
o the tuple will remain empty if no arguments are passed through

¢/> def hello person (*details):

print ("Hello " + details[0] + " and welcome to " + details([1] + "!")

¢/> hello person("Ian", "4061CEM")
hello person("Terry", "4059CEM")

P hello person(“Ian”, “4061CEM”) -> Hello Ian and welcome to 4061CEM!
hello person (“Terry”, “4059CEM”) -> Hello Terry and welcome to 4059CEM!

Bﬁm%?stl \dﬁ/_&' 4061CEM - Programming and Algorithms 1

ARBITRARY KEYWORD ARGUMENTS

e When you do not know the number of keyword arguments that will be passed into a function, add a double asterisk (**) before the parameter name
e The function will receive a dictionary of arguments and access the items accordingly

¢/> def hello person(**details):

print ("Hello " + details['name'] + " and welcome to " + details['code'] + "!")

</> hello person(name="Ian", code="4061CEM")

hello person(code="4059CEM", name="Terry")

P hello person(name=%“Ian”, code=“4061CEM”) -> Hello Ian and welcome to 4061CEM!
hello person (code="4059CEM”, name="“Terry”) —-> Hello Terry and welcome to 4059CEM!
hello person (name=%“Ian”, code=%“4061CEM”) -> Hello Ian and welcome to 4061CEM!

hello person(code="4059CEM”, name="“Terry”) -> Hello Terry and welcome to 4059CEM!

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

FUNCTION ANNOTATIONS

e Function annotations are optional metadata information about the various data types used by user-defined functions
o these annotations are stored in the annotations attribute of a function

e Annotations for a parameter are defined with a colon (:) after the name of the parameter

¢ Annotations for a return are defined by a -> followed by the data type
o this is placed between the list of parameters and the colon denoting the end of the def statement

¢/> def my sum(x: int) -> int:

return 5 + x

¢/> print (my sum. annotations)

P {'x': <class ‘int’>, ‘return’: <class ‘int’>}

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

GOODBYE

e Questions?

o Post them in the Community Page on Aula
¢ Contact Details:

o Dr lan Cornelius, ab6459@coventry.ac.uk

mailto:ab6459@coventry.ac.uk

