Coventry §:2

university ==

SET DATA TYPES

DR IAN CORNELIUS

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

HELLO

¢ Learning Objectives:
1. Understand the set data types that are built-in to Python
2. Demonstrate the ability to use these set data types

Coventrv 3 dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

INTRODUCTION TO SETS

o Sets are used to store multiple items into a single variable

e They are considered to be:
o unordered: the items do not have a defined order and they can appear in a different order each time they are used
o changeable: the items of a set are mutable, meaning that items can be added or removed
o no duplicates allowed: duplicates are not allowed as a set is unordered

e The size of a set (or the number of items stored in a set) can be determined using the 1en() function

Bﬁm%?stl \dﬁ/_&' 4061CEM - Programming and Algorithms 1

CREATING A SET

e Sets are created by using a set of curly braces ({})
o Other data types can be type-casted as a set by using its constructor

<[> setExamplel = {"4061CEM", "Programming", "Algorithms"}

setExample?2 = set (["4061CEM", "Programming", "Algorithms"])

p setExamplel = {‘Algorithms’, ‘Programming’, ‘4061CEM’ }

setExample?2 = {‘Algorithms’, ‘Programming’, ‘4061CEM’ }

Bﬁm%?stl \dﬁ/_&' 4061CEM - Programming and Algorithms 1

ITEMS OF A SET

e The items of a set can be any data type

o i.e. it can be a mixture of data types such as booleans, strings or integers
e However, the 1ist, tuple and set data types cannot be hashed or used inside of a set

<[> setExamplel = {"4061CEM", "Programming", "Algorithms"}

setExample?2 = {4061, "Programming and Algorithms", True}

P setExamplel = {‘Algorithms’, ‘Programming’, ‘4061CEM’ }

setExample?2 = {‘Programming and Algorithms’, 4061, True}

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

ACCESSING SET ITEMS

¢ Items cannot be accessed in a set by referring to it via an index
¢ Instead, items can be accessed using a for loop

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

MODIFYING A SET (1)

e Sets are considered to be mutable, and as such we are able to add and remove items to them

ADDING AN ITEM

¢ |tems can be added into the set using the add() function

<[> setExamplel = {"4061CEM", "Programming", "Algorithms"}

<[> setExamplel = {"4061CEM", "Programming", "Algorithms"}

P setExamplel = {‘Algorithms’, ‘Programming’, ‘Dr Ian Cornelius’, ‘4061CEM’}

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

MODIFYING A SET (2)
REMOVING ITEMS FROM A SET |

¢ Items can be removed from a set using the remove () function
o this will search the set for a specific value and then remove it
e [f the item does not exist, an error will be thrown

<[> setExamplel = {"4061CEM", "Programming", "Algorithms"}

<[> setExamplel.remove ("Programming")

P [Before] setExamplel = {‘Algorithms’, ‘Programming’, ‘4061CEM’}
[After] setExamplel = {‘Algorithms’, ‘4061CEM’}

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

MODIFYING A SET (3)
REMOVING ITEMS FROM A SET Il

¢ Items can also be removed from a set using the pop() function
¢ This will only remove the last item from the set
o but you will not know which item will be removed, as the items in a set can constantly change index

<[> setExamplel = {"4061CEM", "Programming", "Algorithms"}

<[> setExamplel.pop ()

P [Before] setExamplel = {‘Algorithms’, ‘Programming’, ‘4061CEM’}
[After] setExamplel = {‘Programming’, ‘4061CEM’}

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

MODIFYING A SET (4)
REMOVING ITEMS FROM A SET Il

¢ Items can also be removed from a set using the discard() function
o this will search the set for a specific value and then remove it
e [f the item does not exist an error *will not** be thrown

<[> setExamplel = {"4061CEM", "Programming", "Algorithms"}

<[> setExamplel.discard ("Programming")

P [Before] setExamplel = {‘Algorithms’, ‘Programming’, ‘4061CEM’}
[After] setExamplel = {‘Algorithms’, ‘4061CEM’}

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

MODIFYING A SET (5)
CLEARING A SET

¢ A set can be cleared of all its items, but still reserve its memory location by using the clear() function
o this will empty the contents of a set and leave it empty, symbolised by the curly brackets ({}) or the set () constructor

<[> setExamplel = {"4061CEM", "Programming", "Algorithms"}

<[> setExamplel.clear ()

p [Before] setExamplel = {‘Algorithms’, ‘Programming’, ‘4061CEM’}

[After] setExamplel = set()

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

MODIFYING A SET (6)
DELETING A SET

¢ The entire set can be deleted and removed from the memory using the del keyword

<[> setExamplel = {"4061CEM", "Programming", "Algorithms"}

<[> del setExamplel

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

MERGING A SET (1)

e There are various methods of merging two sets together
o update() and union()

UPDATING A SET

e The items of a set can be updated with the items of another set using the update() function

<[> setExamplel {"4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"}

setExample2 = {"4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards"}

<[> setExamplel.update (setExample?2)

P [Before] setExamplel = {‘Programming and Algorithms 1’, ‘4061CEM’, '‘Dr Ian Cornelius’}
[After] setExamplel = {‘Legal and Ethical Foundations’, '‘Dr Ian Cornelius’, ‘Programming and Algorithms 1’, ‘4061CEM’,

‘Mr Terry Richards’, ‘4059CEM’}

Covent

\dﬁ/&' 4061CEM - Programming and Algorithms 1
university S22 g g and Alg

MERGING A SET (2)
UNIONISING A SET

e The items of a set can be unionised with the items of another set using the union() function
o this method will return a new set with both sets merged

<[> setExamplel {"4061CEM", "Programming and Algorithms 1",

setExample? {"4059CEM", "Legal and Ethical Foundations",

"Dr Ian Cornelius"}

"Mr Terry Richards"}

<[> mergedSetExamplel = setExamplel.union (setExample?2)

P mergedSetExamplel = {‘Legal and Ethical Foundations’,

Terry Richards’, ‘4059CEM’}

‘Dr Ian Cornelius’,

‘Programming and Algorithms 17,

‘4061CEM’,

‘Mr

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

MERGING A SET (3)
INTERSECTION OF A SET |

¢ The items that only exist in both sets can be kept using the intersection_update() function
o this will update the set it is called upon with only the duplicate values, removing any unique values

<[> setExamplel

setExample?

{"4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"}

{"4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards", "Dr Ian Cornelius"}

<[> setExamplel.intersection update (setExample2)

P [Before] setExamplel = {‘Programming and Algorithms 1’,

[After] setExamplel = {‘Dr Ian Cornelius’}

‘4061CEM’,

‘Dr Ian Cornelius’}

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

MERGING A SET (4)
INTERSECTION OF A SET Il

e The items that only exist in both sets can be kept using the intersection() function
o this method will create a new set with only the duplicated values

<[> setExamplel {"4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"}

setExample? {"4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards", "Dr Ian Cornelius"}

¢/> mergedSetExamplel = setExamplel.intersection (setExample?2)

P mergedSetExamplel = {‘Dr Ian Cornelius’}

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

MERGING A SET (5)
SYMMETRIC DIFFERENCE OF A SET |

e The items that do not exist in both sets can be kept using the symmetric_difference update() function
o this will update the set it has been called upon with only the unique values, removing any duplicate values

<[> setExamplel {"4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"}

setExample? {"4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards", "Dr Ian Cornelius"}

<[> setExamplel.symmetric difference update (setExample2)

P [Before] setExamplel = {‘Programming and Algorithms 1’, ‘4061CEM’, ‘Dr Ian Cornelius’}
[After] setExamplel = {‘Legal and Ethical Foundations’, ‘Programming and Algorithms 1’, ‘4059CEM’, ‘4061CEM’, ‘Mr Terry

Richards’ }

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

MERGING A SET (6)
SYMMETRIC DIFFERENCE OF A SET (ll)

e The items that do not exist in both sets can be kept using the symmetric_difference() function
o this method will create a new set with only the unique values

<[> setExamplel {"4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"}

setExample? {"4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards", "Dr Ian Cornelius"}

¢/> mergedSetExamplel = setExamplel.symmetric difference (setExampleZ2)

P mergedSetExamplel = {‘Legal and Ethical Foundations’, ‘Programming and Algorithms 1’, ‘4059CEM’, ‘4061CEM’, ‘Mr Terry

Richards’ }

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

COPYING A SET

e The method of copying a set by using set2 = set1 is incorrect
o this method creates a reference to set1 and not an actual copy; therefore, any changes made in set1 will occur in set2
e The correct process of copying a set can be achieved by the copy() function or the set () constructor itself

<[> setExamplel = {"4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"}

<[> copySetExamplel setExamplel.copy ()

copySetExample? = set (setExamplel)

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

GOODBYE

e Questions?

o Post them in the Community Page on Aula
¢ Contact Details:

o Dr lan Cornelius, ab6459@coventry.ac.uk

mailto:ab6459@coventry.ac.uk

