
SET DATA TYPES
DR
IAN CORNELIUS

1

4061CEM - Programming and Algorithms 1

HELLO
Learning Objectives:

1. Understand the set data types that are built-in to
Python
2. Demonstrate the ability to use these set data types

2

4061CEM - Programming and Algorithms 1

INTRODUCTION TO SETS
Sets are used to store multiple items into a single
variable
They are considered to be:

unordered: the items do not have a
defined order and they can appear in a different order each
time they are used
changeable: the items of a set are
mutable, meaning that items can be added or removed
no duplicates allowed: duplicates are
not allowed as a set is unordered

The size of a set (or the number of items stored in a
set) can be determined using the len()
function

3
 .
1

4061CEM - Programming and Algorithms 1

CREATING A SET
Sets are created by using a set of curly braces
({})
Other data types can be type-casted as a set by using
its constructor

setExample1 = {"4061CEM", "Programming", "Algorithms"}

setExample2 = set(["4061CEM", "Programming", "Algorithms"])



setExample1 = {‘Algorithms’, ‘Programming’,
‘4061CEM’}

setExample2 = {‘Algorithms’, ‘Programming’,
‘4061CEM’}



3
 .
2

4061CEM - Programming and Algorithms 1

ITEMS OF A SET
The items of a set can be any data type

i.e. it can be a mixture of data types such as booleans,
strings or integers
However, the list, tuple and
set data types cannot be hashed or used inside
of a set

setExample1 = {"4061CEM", "Programming", "Algorithms"}

setExample2 = {4061, "Programming and Algorithms", True}



setExample1 = {‘Algorithms’, ‘Programming’,
‘4061CEM’}

setExample2 = {‘Programming and Algorithms’, 4061,
True}



3
 .
3

4061CEM - Programming and Algorithms 1

ACCESSING SET ITEMS
Items cannot be accessed in a set by
referring to it via an index
Instead, items can be accessed using a for
loop

3
 .
4

4061CEM - Programming and Algorithms 1

MODIFYING A SET (1)
Sets are considered to be mutable, and as such we are
able to add and remove items to them

ADDING AN ITEM
Items can be added into the set using the
add() function

setExample1 = {"4061CEM", "Programming", "Algorithms"}

setExample1 = {"4061CEM", "Programming", "Algorithms"}

setExample1 = {‘Algorithms’, ‘Programming’, ‘Dr Ian
Cornelius’, ‘4061CEM’}

3
 .
5

4061CEM - Programming and Algorithms 1

MODIFYING A SET (2)
REMOVING ITEMS FROM A
SET I

Items can be removed from a set using the
remove() function
this will search the set for a specific value and then
remove it

If the item does not exist, an error will be thrown

setExample1 = {"4061CEM", "Programming", "Algorithms"}

setExample1.remove("Programming")

[Before] setExample1 = {‘Algorithms’, ‘Programming’,
‘4061CEM’}

[After] setExample1 = {‘Algorithms’, ‘4061CEM’}



3
 .
6

4061CEM - Programming and Algorithms 1

MODIFYING A SET (3)
REMOVING ITEMS FROM A
SET II

Items can also be removed from a set using the
pop() function
This will only remove the last item from the set

but you will not know which item will be removed, as the
items in a set can constantly change index

setExample1 = {"4061CEM", "Programming", "Algorithms"}

setExample1.pop()

[Before] setExample1 = {‘Algorithms’, ‘Programming’,
‘4061CEM’}

[After] setExample1 = {‘Programming’, ‘4061CEM’}



3
 .
7

4061CEM - Programming and Algorithms 1

MODIFYING A SET (4)
REMOVING ITEMS FROM A
SET III

Items can also be removed from a set using the
discard() function
this will search the set for a specific value and then
remove it

If the item does not exist an error *will not** be
thrown

setExample1 = {"4061CEM", "Programming", "Algorithms"}

setExample1.discard("Programming")

[Before] setExample1 = {‘Algorithms’, ‘Programming’,
‘4061CEM’}

[After] setExample1 = {‘Algorithms’, ‘4061CEM’}



3
 .
8

4061CEM - Programming and Algorithms 1

MODIFYING A SET (5)
CLEARING A SET

A set can be cleared of all its items, but still reserve
its memory location by using the clear()
function
this will empty the contents of a set and leave it
empty, symbolised by the curly brackets ({}) or
the set() constructor

setExample1 = {"4061CEM", "Programming", "Algorithms"}

setExample1.clear()

[Before] setExample1 = {‘Algorithms’, ‘Programming’,
‘4061CEM’}

[After] setExample1 = set()



3
 .
9

4061CEM - Programming and Algorithms 1

MODIFYING A SET (6)
DELETING A SET

The entire set can be deleted and removed from the
memory using the del keyword

setExample1 = {"4061CEM", "Programming", "Algorithms"}

del setExample1

3
 .
10

4061CEM - Programming and Algorithms 1

MERGING A SET (1)
There are various methods of merging two sets together

update() and union()

UPDATING A SET
The items of a set can be updated with the items of
another set using the update() function

setExample1 = {"4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"}

setExample2 = {"4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards"}



setExample1.update(setExample2)

[Before] setExample1 = {‘Programming and Algorithms 1’,
‘4061CEM’, ‘Dr Ian Cornelius’}

[After] setExample1 = {‘Legal and Ethical Foundations’,
‘Dr Ian Cornelius’, ‘Programming and Algorithms 1’,
‘4061CEM’,

‘Mr Terry Richards’, ‘4059CEM’}



3
 .
11

4061CEM - Programming and Algorithms 1

MERGING A SET (2)
UNIONISING A SET

The items of a set can be unionised with the items of
another set using the union() function
this method will return a new set with both sets
merged

setExample1 = {"4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"}

setExample2 = {"4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards"}



mergedSetExample1 = setExample1.union(setExample2)

mergedSetExample1 = {‘Legal and Ethical Foundations’, ‘Dr
Ian Cornelius’, ‘Programming and Algorithms 1’, ‘4061CEM’,
‘Mr

Terry Richards’, ‘4059CEM’}



3
 .
12

4061CEM - Programming and Algorithms 1

MERGING A SET (3)
INTERSECTION OF A SET
I

The items that only exist in both sets can be kept using
the intersection_update() function
this will update the set it is called upon with only the
duplicate values, removing any unique values

setExample1 = {"4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"}

setExample2 = {"4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards", "Dr Ian Cornelius"}



setExample1.intersection_update(setExample2)

[Before] setExample1 = {‘Programming and Algorithms 1’,
‘4061CEM’, ‘Dr Ian Cornelius’}

[After] setExample1 = {‘Dr Ian Cornelius’}



3
 .
13

4061CEM - Programming and Algorithms 1

MERGING A SET (4)
INTERSECTION OF A SET
II

The items that only exist in both sets can be kept using
the intersection() function
this method will create a new set with only the
duplicated values

setExample1 = {"4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"}

setExample2 = {"4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards", "Dr Ian Cornelius"}



mergedSetExample1 = setExample1.intersection(setExample2)

mergedSetExample1 = {‘Dr Ian Cornelius’}

3
 .
14

4061CEM - Programming and Algorithms 1

MERGING A SET (5)
SYMMETRIC
DIFFERENCE OF A SET I

The items that do not exist in both sets can be kept
using the symmetric_difference_update()
function
this will update the set it has been called upon with
only the unique values, removing any duplicate
values

setExample1 = {"4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"}

setExample2 = {"4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards", "Dr Ian Cornelius"}



setExample1.symmetric_difference_update(setExample2)

[Before] setExample1 = {‘Programming and Algorithms 1’,
‘4061CEM’, ‘Dr Ian Cornelius’}

[After] setExample1 = {‘Legal and Ethical Foundations’,
‘Programming and Algorithms 1’, ‘4059CEM’, ‘4061CEM’, ‘Mr
Terry

Richards’}



3
 .
15

4061CEM - Programming and Algorithms 1

MERGING A SET (6)
SYMMETRIC
DIFFERENCE OF A SET (II)

The items that do not exist in both sets can be kept
using the symmetric_difference() function
this method will create a new set with only the unique
values

setExample1 = {"4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"}

setExample2 = {"4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards", "Dr Ian Cornelius"}



mergedSetExample1 = setExample1.symmetric_difference(setExample2)

mergedSetExample1 = {‘Legal and Ethical Foundations’,
‘Programming and Algorithms 1’, ‘4059CEM’, ‘4061CEM’, ‘Mr
Terry

Richards’}



3
 .
16

4061CEM - Programming and Algorithms 1

COPYING A SET
The method of copying a set by using
set2 = set1 is incorrect

this method creates a reference to set1 and
not an actual copy; therefore, any changes made in
set1 will occur in set2
The correct process of copying a set can be achieved by
the copy() function or the set()
constructor itself

setExample1 = {"4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"}

copySetExample1 = setExample1.copy()

copySetExample2 = set(setExample1)



3
 .
17

4061CEM - Programming and Algorithms 1

GOODBYE
Questions?

Post them in the Community Page on
Aula
Contact Details:

Dr Ian Cornelius, ab6459@coventry.ac.uk

4

4061CEM - Programming and Algorithms 1

mailto:ab6459@coventry.ac.uk

