
SEQUENCE DATA TYPES
DR
IAN CORNELIUS

1

4061CEM - Programming and Algorithms 1

HELLO
Learning Objectives:

1. Understand the other sequence data types that are
built-in to Python
2. Demonstrate the ability to use these other sequence data
types

2

4061CEM - Programming and Algorithms 1

PREVIOUSLY…
Last week you were introduced to a couple of sequence
data types:

Bytes
Range

This week, you will be introduced to the other two:
Lists
Tuples

3

4061CEM - Programming and Algorithms 1

INTRODUCTION TO LISTS
Lists are used to store multiple items into a single
variable
They are considered to be:

ordered: the items have a defined order
and this order will not change when new items are added to
the list
changeable: the items of a list are
mutable (can be changed), added or removed
allowable of duplicates: lists are
indexed, and therefore items in a list can be
duplicated

The size of a list (or the number of items stored in a
list) can be determined using the len()
function

4
 .
1

4061CEM - Programming and Algorithms 1

CREATING A LIST
Lists are created by using a set of square brackets
([])
Other data types can be type-casted as a list by using
its constructor

listExample1 = ["4061CEM", "Programming", "Algorithms"]

listExample2 = list(("4061CEM", "Programming", "Algorithms"))

listExample3 = list("Hello 4061CEM!")



4
 .
2

4061CEM - Programming and Algorithms 1

ITEMS OF A LIST
The items of a list can be any data type

i.e. it can be a mixture of data types such as booleans,
strings, lists or integers

listExample1 = ["4061CEM", "Programming", "Algorithms"]

listExample2 = [4061, "Programming and Algorithms", True,

 ["Dr Ian Cornelius", "Mr Terry Richards"]]



4
 .
3

4061CEM - Programming and Algorithms 1

ACCESSING LIST ITEMS (1)
The items in a list can be accessed by referring to its
index number inside a set of square brackets
([])

Note that the index of a list begins at
0 in Python, other programming languages begin
at 1

listExample1 = ["4061CEM", "Programming", "Algorithms"]

listExample2 = [4061, "Programming and Algorithms", True,

 ["Dr Ian Cornelius", "Mr Terry Richards"]]



listExample1[1]

listExample1[1].upper()

listExample2[3][1]



listExample1[1] = Programming

listExample1[1].upper() = PROGRAMMING

listExample2[3][1] = Mr Terry Richards



4
 .
4

4061CEM - Programming and Algorithms 1

ACCESSING LIST ITEMS (2)
NEGATIVE INDEXING

When using a negative index, it will access the list
from the end
i.e. -1 will refer to the last item and
-2 the second to last item etc.

listExample1 = ["4061CEM", "Programming", "Algorithms"]

listExample1[-1]

listExample1[-2]



listExample1[-1] = Algorithms

listExample1[-2] = Programming



4
 .
5

4061CEM - Programming and Algorithms 1

ACCESSING LIST ITEMS (3)
SLICING A
LIST USING POSITIVE INDEXES I

A selection of items in a list can be returned using a
slice
a slice is a number range using a colon
(“:”) between the two numbers
i.e. 1:3 represents begin at index
1 and go up to index 3

The search will begin at the start value and include it
in the returned list
it will end at the end value, but will
not include it in the returned list

listExample1 = [4061, "Programming and Algorithms", True, "Dr Ian Cornelius"]

listExample1[1:3]

listExample1[1:3] = [‘Programming and Algorithms’,
True]

4
 .
6

4061CEM - Programming and Algorithms 1

ACCESSING LIST ITEMS (4)
SLICING A
LIST USING POSITIVE INDEXES II

By not providing a start value, the range function will
always begin at the first index

If you do not provide an end value, it will return all
items from the start index to the end of the list

listExample1 = [4061, "Programming and Algorithms", True, "Dr Ian Cornelius"]

listExample1[:3]

listExample1[:3] = [4061, ‘Programming and Algorithms’,
True]

listExample1[2:]

listExample1[2:] = [True, ‘Dr Ian Cornelius’]

4
 .
7

4061CEM - Programming and Algorithms 1

MODIFYING A LIST (1)
As items are ordered and indexed, they are modifiable;
otherwise known as being mutable

4
 .
8

4061CEM - Programming and Algorithms 1

INSERTING AN ITEM
Items can be inserted into the list and not replace
pre-existing items at a given index using the
insert() function

You can also insert an item at a different index
this will move the item at the index to the right by
one, and all other items

listExample1 = ["4061CEM", "Programming", "Algorithms"]

listExample1.insert(3, "Dr Ian Cornelius")

listExample1 = [‘4061CEM’, ‘Programming’, ‘Algorithms’,
‘Dr Ian Cornelius’]

listExample1.insert(1, "Dr Ian Cornelius")

listExample1 = [‘4061CEM’, ‘Dr Ian Cornelius’,
‘Programming’, ‘Algorithms’]

4
 .
9

4061CEM - Programming and Algorithms 1

MODIFYING A LIST (2)
APPENDING AN ITEM

Items can be inserted at the end of the list using the
append() function

listExample1 = ["4061CEM", "Programming", "Algorithms"]

listExample1.append("Mr Terry Richards")

listExample1 = [‘4061CEM’, ‘Programming’, ‘Algorithms’,
‘Mr Terry Richards’]

4
 .
10

4061CEM - Programming and Algorithms 1

MODIFYING A LIST (3)
REMOVING ITEMS FROM A
LIST I

Items can be removed from a list using the
remove() function
This will search the list for a specific value and then
remove it

listExample1 = ["4061CEM", "Programming", "Algorithms"]

listExample1.remove("Programming")

listExample1 = [‘4061CEM’, ‘Algorithms’]

4
 .
11

4061CEM - Programming and Algorithms 1

MODIFYING A LIST (4)
REMOVING ITEMS FROM A
LIST II

An item can also be removed from a list by using the
pop() function
this will remove the item from a list by its index

listExample1 = ["4061CEM", "Programming", "Algorithms"]

listExample1.pop(1)

listExample1 = [‘4061CEM’, ‘Algorithms’]

4
 .
12

4061CEM - Programming and Algorithms 1

MODIFYING A LIST (5)
REMOVING ITEMS FROM
A LIST III

An item can also be removed from a list by referring to
its index in square brackets ([]) and using the
del keyword

listExample1 = ["4061CEM", "Programming", "Algorithms"]

del listExample1[1]

listExample1 = [‘4061CEM’, ‘Algorithms’]

4
 .
13

4061CEM - Programming and Algorithms 1

MODIFYING A LIST (6)
CLEARING A LIST

A list can be cleared of all its items, but still
reserve its memory location by using the
clear() function
This will empty the contents of a list and leave it
empty, symbolised by just the square brackets
([])

listExample1 = ["4061CEM", "Programming", "Algorithms"]

listExample1.clear()

listExample1 = []

4
 .
14

4061CEM - Programming and Algorithms 1

MERGING A LIST (1)
There are various methods of merging two lists together:
concatenation or extension

CONCATENATING A LIST
The items of a list can be concatenated with the items
of another list using the + operator

listExample1 = ["4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"]

listExample2 = ["4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards"]



mergedListExample1 = listExample1 + listExample2

mergedListExample1 = [‘4061CEM’, ‘Programming and
Algorithms 1’, ‘Dr Ian Cornelius’, ‘4059CEM’, ‘Legal and
Ethical

Foundations’, ‘Mr Terry Richards’]



4
 .
15

4061CEM - Programming and Algorithms 1

MERGING A LIST (2)
EXTENDING A LIST

The items of a list can be merged with the items of
another list using the extend() function

listExample1 = ["4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"]

listExample2 = ["4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards"]



listExample1.extend(listExample2)

listExample1 = [‘4061CEM’, ‘Programming and Algorithms
1’, ‘Dr Ian Cornelius’, ‘4059CEM’, ‘Legal and Ethical

Foundations’, ‘Mr Terry Richards’]



4
 .
16

4061CEM - Programming and Algorithms 1

COPYING A LIST
The method of copying a list by using
list2 = list1 is incorrect

this method creates a reference to list1
and not an actual copy; therefore any changes made
in list1 will occur in list2
The correct process of copying a list can be achieved by
the copy() function or the list()
constructor itself

listExample1 = ["4061CEM", "Programming", "Algorithms"]

copyListExample1 = listExample1.copy()

copyListExample2 = list(listExample1)



copyListExample1 = [‘4061CEM’, ‘Programming’,
‘Algorithms’]

copyListExample2 = [‘4061CEM’, ‘Programming’,
‘Algorithms’]



4
 .
17

4061CEM - Programming and Algorithms 1

INTRODUCTION TO TUPLES
Tuples are used to store multiple items into a single
variable
They are considered to be:

ordered: the items have a defined order
and this order will not change
unchangeable: the items of a tuple are
immutable; they cannot be changed, added or removed
allowable of duplicates: tuples are
indexed, and therefore items in a list can be
duplicated

The size of a tuples (or the number of items stored in a
tuple) can be determined using the len()
function

5
 .
1

4061CEM - Programming and Algorithms 1

CREATING A TUPLE
Tuples are created by using a set of brackets
(())
Other data types can be type-casted as a tuple by using
its constructor

tupleExample1 = ("4061CEM", "Programming", "Algorithms")

tupleExample2 = tuple("Hello 4061CEM")



tupleExample1 = (‘4061CEM’, ‘Programming’,
‘Algorithms’)

tupleExample2 = (‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ’ ‘, ’4’, ‘0’,
‘6’, ‘1’, ‘C’, ‘E’, ‘M’)



5
 .
2

4061CEM - Programming and Algorithms 1

ITEMS OF A TUPLE
The items of a tuple can be any data type

i.e. it can be a mixture of data types such as booleans,
strings, tuples or integers

tupleExample1 = ("4061CEM", "Programming", "Algorithms")

tupleExample2 = (4061, "Programming and Algorithms", True,

 ("Dr Ian Cornelius", "Mr Terry Richards"))



tupleExample1 = (‘4061CEM’, ‘Programming’,
‘Algorithms’)

tupleExample2 = (4061, ‘Programming and Algorithms’,
True, (‘Dr Ian Cornelius’, ‘Mr Terry Richards’))



5
 .
3

4061CEM - Programming and Algorithms 1

ACCESSING TUPLE ITEMS (1)
The items in a tuple can be accessed by referring to its
index number inside a set of square brackets
([])

Note that the index of a tuple begins
at 0 in Python, other programming languages
begin at 1

tupleExample1 = ("4061CEM", "Programming", "Algorithms")

tupleExample1[1]

tupleExample1[2]



tupleExample1[1] = Programming

tupleExample1[2] = Algorithms



5
 .
4

4061CEM - Programming and Algorithms 1

ACCESSING TUPLE ITEMS (2)
NEGATIVE INDEXING

When using a negative index, it will access the tuple
from the end
i.e. -1 will refer to the last item and
-2 the second to last item etc.

tupleExample1 = ("4061CEM", "Programming", "Algorithms")

tupleExample1[-1]

tupleExample1[-2]



tupleExample1[-1] = Algorithms

tupleExample1[-2] = Programming



5
 .
5

4061CEM - Programming and Algorithms 1

ACCESSING TUPLE ITEMS (3)
SLICING A
TUPLE USING POSITIVE INDEXES I

A selection of items in a tuple can be returned using a
slice
a slice is a number range using a colon
(“:”) between the two numbers
i.e. 1:3 represents begin at index
1 and go up to index 3

The search will begin at the start value and include it
in the returned tuple
it will end at the end value, but will
not include it in the returned tuple

tupleExample1 = (4061, "Programming and Algorithms", True, "Dr Ian Cornelius")

tupleExample1[1:3]

tupleExample1[1:3] = (‘Programming and Algorithms’,
True)

5
 .
6

4061CEM - Programming and Algorithms 1

ACCESSING TUPLE ITEMS (4)
SLICING A
TUPLE USING POSITIVE INDEXES II

By not providing a start value, the range function will
always begin at the first index

By not providing an end value, the range function will
always terminate at the last index

tupleExample1 = (4061, "Programming and Algorithms", True, "Dr Ian Cornelius")

tupleExample1[:3]

tupleExample1[:3] = (4061, ‘Programming and Algorithms’,
True)

tupleExample1[2:]

tupleExample1[2:] = (True, ‘Dr Ian Cornelius’)

5
 .
7

4061CEM - Programming and Algorithms 1

MODIFYING A TUPLE (1)
The items of a tuple cannot be changed once they have
been created, commonly referred to as
immutable
There is a workaround to changing the items in a tuple:

1. Convert the tuple to a list
2. Make the changes as required to the list
3. Convert the list back to a tuple

tupleExample1 = ("4061CEM", "Programming", "Algorithms")

listExample1 = list(tupleExample1)



listExample1.append("Ian Cornelius")

tupleExample1 = tuple(listExample1)



[Before] tupleExample1 = (‘4061CEM’, ‘Programming’,
‘Algorithms’)

[After] tupleExample1 = (‘4061CEM’, ‘Programming’,
‘Algorithms’, ‘Ian Cornelius’)



5
 .
8

4061CEM - Programming and Algorithms 1

MODIFYING A TUPLE (2)
DELETING A TUPLE

The entire tuple can be deleted and removed from the
memory using the del keyword

tupleExample1 = ("4061CEM", "Programming", "Algorithms")

del tupleExample1

5
 .
9

4061CEM - Programming and Algorithms 1

MERGING A TUPLE
The items of a tuple can be concatenated with the items
of another tuple using the addition (“+”)
operator

tupleExample1 = ("4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius")

tupleExample2 = ("4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards")



mergedTupleExample1 = tupleExample1 + tupleExample2

mergedTupleExample1 = (‘4061CEM’, ‘Programming and
Algorithms 1’, ‘Dr Ian Cornelius’, ‘4059CEM’, ‘Legal and
Ethical

Foundations’, ‘Mr Terry Richards’)



5
 .
10

4061CEM - Programming and Algorithms 1

MULTIPLYING A TUPLE
The items of a tuple can be multiplied to duplicate
them, this can be achieved using the multiplying
(“*”) operator

tupleExample1 = ("4061CEM", "Programming", "Algorithms")

tupleExample2 = tupleExample1 * 3

tupleExample2 = (‘4061CEM’, ‘Programming’, ‘Algorithms’,
‘4061CEM’, ‘Programming’, ‘Algorithms’, ‘4061CEM’,

‘Programming’, ‘Algorithms’)



5
 .
11

4061CEM - Programming and Algorithms 1

PACKING AND UNPACKING A TUPLE (1)
Placing items within a tuple is known as
packing
The items of a tuple can be extracted to their own
variable with a process known as
unpacking

tupleExample1 = ("4061CEM", "Programming", "Algorithms")

(module_code, title1, title2) = tupleExample1

module_code = 4061CEM

title1 = Programming

title2 = Algorithms



5
 .
12

4061CEM - Programming and Algorithms 1

PACKING AND UNPACKING A TUPLE (2)
When unpacking you must match the number of variables to
the number of items in the tuple
If you have fewer variables than the number of items in
the tuple; adding * to the variable name will
assign remaining items in the tuple to a list

tupleExample1 = ("4061CEM", "Programming", "Algorithms")

(module_code, *title) = tupleExample1

module_code = 4061CEM

title = [‘Programming’, ‘Algorithms’]



5
 .
13

4061CEM - Programming and Algorithms 1

PACKING AND UNPACKING A TUPLE (3)
If you add the * to a variable that is not
last, then Python will assign values to a list for that
variable until the number of values left match the number of
variables left

tupleExample1 = ("4061CEM", "Programming", "Algorithms", "1", "Dr Ian Cornelius", True)

(module_code, *title, leader, running) = tupleExample1

module_code = 4061CEM

*title = [‘Programming’, ‘Algorithms’, ‘1’]

leader = Dr Ian Cornelius

running = True



5
 .
14

4061CEM - Programming and Algorithms 1

COMMON BUILT-IN DATA TYPE METHODS
Lists and Tuples have some common methods that are
built-in directly to them:

count and index

6
 .
1

4061CEM - Programming and Algorithms 1

COUNT
The count() method will return the number
of times a specified value will occur in the list or
tuple

listExample1 = ["4061CEM", "Programming", "Algorithms", "Algorithms", "algorithms"]

listExample1.count('Algorithms')

listExample1.count(‘Algorithms’) = 2

6
 .
2

4061CEM - Programming and Algorithms 1

INDEX
The index() method will search the list for
a specified value and return its index in the list or
tuple

tupleExample1 = ("4061CEM", "Programming", "Algorithms")

tupleExample1.index("Programming")

tupleExample1.index(“Programming”) = 1

6
 .
3

4061CEM - Programming and Algorithms 1

GOODBYE
Questions?

Post them in the Community Page on
Aula
Contact Details:

Dr Ian Cornelius, ab6459@coventry.ac.uk

7

4061CEM - Programming and Algorithms 1

mailto:ab6459@coventry.ac.uk

