Coventry &2

university ==

SEQUENCE DATA TYPES

DR IAN CORNELIUS

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

HELLO

¢ Learning Objectives:
1. Understand the other sequence data types that are built-in to Python
2. Demonstrate the ability to use these other sequence data types

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

PREVIOUSLY. ...

o Last week you were introduced to a couple of sequence data types:
o Bytes
o Range
e This week, you will be introduced to the other two:
o Lists
o Tuples

Coventrv 3 dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

INTRODUCTION TO LISTS

e Lists are used to store multiple items into a single variable

e They are considered to be:
o ordered: the items have a defined order and this order will not change when new items are added to the list
o changeable: the items of a list are mutable (can be changed), added or removed
o allowable of duplicates: lists are indexed, and therefore items in a list can be duplicated

e The size of a list (or the number of items stored in a list) can be determined using the 1en() function

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

CREATING A LIST

e Lists are created by using a set of square brackets ([1)
o Other data types can be type-casted as a list by using its constructor

<[> listExamplel ["4061CEM", "Programming", "Algorithms"]

listExample?2 list (("4061CEM", "Programming", "Algorithms"))

listExample3 = list ("Hello 4061CEM!"™)

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

ITEMS OF A LIST

e The items of a list can be any data type
o i.e. it can be a mixture of data types such as booleans, strings, lists or integers

<[> listExamplel ["4061CEM", "Programming", "Algorithms"]

listExample?2 [4061, "Programming and Algorithms", True,

["Dr Ian Cornelius", "Mr Terry Richards"]]

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

ACCESSING LIST ITEMS (1)

e The items in a list can be accessed by referring to its index number inside a set of square brackets ([1)
o Note that the index of a list begins at @ in Python, other programming languages begin at 1

<[> listExamplel ["4061CEM", "Programming", "Algorithms"]

listExample?2 [4061, "Programming and Algorithms", True,

["Dr Ian Cornelius", "Mr Terry Richards"]]

<[> listExamplel[1]
listExamplel[1] .upper ()
listExample2 [3][1]

p listExamplel[l] = Programming
listExamplel[1l] .upper () = PROGRAMMING
listExample2[3][1] = Mr Terry Richards

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

ACCESSING LIST ITEMS (2)
NEGATIVE INDEXING

¢ When using a negative index, it will access the list from the end
o i.e. -1 will refer to the last item and -2 the second to last item etc.

<[> listExamplel = ["4061CEM", "Programming", "Algorithms"]

<[> listExamplel[-1]
listExamplel [-2]

p listExamplel[-1] Algorithms

listExamplel[-2] Programming

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

ACCESSING LIST ITEMS (3)
SLICING A LIST USING POSITIVE INDEXES |

¢ A selection of items in a list can be returned using a slice
o aslice is a number range using a colon (“:”) between the two numbers
o i.e. 1:3 represents begin at index 1 and go up to index 3

e The search will begin at the start value and include it in the returned list

o it will end at the end value, but will not include it in the returned list

<[> listExamplel = [4061, "Programming and Algorithms", True, "Dr Ian Cornelius"]

<[> listExamplel([1l:3]

p listExamplel[l:3] = [‘Programming and Algorithms’, True]

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

ACCESSING LIST ITEMS (4)
SLICING A LIST USING POSITIVE INDEXES Il

¢ By not providing a start value, the range function will always begin at the first index

<[> listExamplel = [4061, "Programming and Algorithms", True, "Dr Ian Cornelius"]

<[> listExamplel[:3]

‘ p listExamplel[:3] = [4061, ‘Programming and Algorithms’, True]

¢ If you do not provide an end value, it will return all items from the start index to the end of the list

<[> listExamplel[2:]

\ p listExamplel[2:] = [True, ‘Dr Ian Cornelius’]

Covent% ?_;_ d’“/_&' 4061CEM - Programming and Algorithms 1

universi

MODIFYING A LIST (1)

¢ As items are ordered and indexed, they are modifiable; otherwise known as being mutable

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

INSERTING AN ITEM

¢ Items can be inserted into the list and not replace pre-existing items at a given index using the insert() function

<[> listExamplel = ["4061CEM", "Programming", "Algorithms"]

</> listExamplel.insert (3, "Dr Ian Cornelius")

p listExamplel = [‘4061CEM’, ‘Programming’, ‘Algorithms’, ‘Dr Ian Cornelius’]

¢ You can also insert an item at a different index
o this will move the item at the index to the right by one, and all other items

</> listExamplel.insert (1, "Dr Ian Cornelius")

| p listExamplel = [‘4061CEM’, ‘Dr Ian Cornelius’, ‘Programming’, ‘Algorithms’]

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

MODIFYING A LIST (2)
APPENDING AN ITEM

¢ Items can be inserted at the end of the list using the append() function

<[> listExamplel = ["4061CEM", "Programming", "Algorithms"]

¢/> listExamplel.append("Mr Terry Richards")

p listExamplel = [‘4061CEM’, ‘Programming’, ‘Algorithms’, ‘Mr Terry Richards’]

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

MODIFYING A LIST (3)
REMOVING ITEMS FROM A LIST |

¢ Items can be removed from a list using the remove () function
e This will search the list for a specific value and then remove it

<[> listExamplel = ["4061CEM", "Programming", "Algorithms"]

<[> listExamplel.remove ("Programming")

p listExamplel = [‘4061CEM’, ‘Algorithms’]

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

MODIFYING A LIST (4)
REMOVING ITEMS FROM A LIST I

¢ An item can also be removed from a list by using the pop() function
o this will remove the item from a list by its index

<[> listExamplel = ["4061CEM", "Programming", "Algorithms"]

<[> listExamplel.pop (1)

p listExamplel = [‘4061CEM’, ‘Algorithms’]

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

MODIFYING A LIST (5)
REMOVING ITEMS FROM A LIST Il

¢ An item can also be removed from a list by referring to its index in square brackets ([]) and using the del keyword

<[> listExamplel = ["4061CEM", "Programming", "Algorithms"]

<[> del listExamplel([1]

p listExamplel = [‘4061CEM’, ‘Algorithms’]

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

MODIFYING A LIST (6)
CLEARING A LIST

¢ Alist can be cleared of all its items, but still reserve its memory location by using the clear() function
e This will empty the contents of a list and leave it empty, symbolised by just the square brackets ([])

<[> listExamplel = ["4061CEM", "Programming", "Algorithms"]

<[> listExamplel.clear ()

p listExamplel = []

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

MERGING A LIST (1)

e There are various methods of merging two lists together: concatenation or extension

CONCATENATING A LIST

e The items of a list can be concatenated with the items of another list using the + operator

<[> listExamplel ["4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"]

listExample2 = ["4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards"]

<[> mergedListExamplel = listExamplel + listExample2

P mergedlistExamplel = [‘4061CEM’, ‘Programming and Algorithms 1’, ‘Dr Ian Cornelius’, ‘4059CEM’, ‘Legal and Ethical

Foundations’, ‘Mr Terry Richards’]

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

MERGING A LIST (2)
EXTENDING A LIST

e The items of a list can be merged with the items of another list using the extend() function

<[> listExamplel

listExample?2

["4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius"]

["4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards"]

<[> listExamplel.extend(listExample?2)

listExamplel = [‘4061CEM’, ‘Programming and Algorithms 17,
P

Foundations’, Mr Terry Richards’]

‘Dr Ian Cornelius’,

*4059CEM’,

‘Legal and Ethical

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

COPYING A LIST

e The method of copying a list by using 1ist2 = list1 is incorrect
o this method creates a reference to 1ist1 and not an actual copy; therefore any changes made in 1ist1 will occurin list2
e The correct process of copying a list can be achieved by the copy () function or the 1ist() constructor itself

<[> listExamplel = ["4061CEM", "Programming", "Algorithms"]

<[> copylListExamplel listExamplel.copy ()

copyListExample?2 = list (listExamplel)

p copylistExamplel = [‘4061CEM’, ‘Programming’, ‘Algorithms’]
copylListExample2 = [‘4061CEM’, ‘Programming’, ‘Algorithms’]

Coventrv 3 dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

INTRODUCTION TO TUPLES

e Tuples are used to store multiple items into a single variable
e They are considered to be:
o ordered: the items have a defined order and this order will not change
o unchangeable: the items of a tuple are immutable; they cannot be changed, added or removed
o allowable of duplicates: tuples are indexed, and therefore items in a list can be duplicated
e The size of a tuples (or the number of items stored in a tuple) can be determined using the 1en() function

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

CREATING A TUPLE

e Tuples are created by using a set of brackets (())
e Other data types can be type-casted as a tuple by using its constructor

<[> tupleExamplel = ("4061CEM", "Programming", "Algorithms")
tupleExample2 = tuple("Hello 4061CEM")

p tupleExamplel (‘4061CEM’, ‘Programming’, ‘Algorithms’)

tupleEXampleZ — (\HI, \eI, \lI, \lI, \OI, 14 \, 141, \Ol, \61, \ll, \CI, \El, \MI)

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

ITEMS OF A TUPLE

e The items of a tuple can be any data type
o i.e. it can be a mixture of data types such as booleans, strings, tuples or integers

<[> tupleExamplel = ("4061CEM", "Programming", "Algorithms")

tupleExample? (4061, "Programming and Algorithms", True,

("Dr Ian Cornelius", "Mr Terry Richards"))

p tupleExamplel (Y4061CEM’, ‘Programming’, ‘Algorithms’)

tupleExample?2 = (4061, ‘Programming and Algorithms’, True, (‘Dr Ian Cornelius’, ‘Mr Terry Richards’))

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

ACCESSING TUPLE ITEMS (1)

e The items in a tuple can be accessed by referring to its index number inside a set of square brackets ([])
o Note that the index of a tuple begins at ¢ in Python, other programming languages begin at 1

<[> tupleExamplel = ("4061CEM", "Programming", "Algorithms")

<[> tupleExamplel([1]
tupleExamplel [2]

p tupleExamplel[1l]

Programming

tupleExamplel [2] Algorithms

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

ACCESSING TUPLE ITEMS (2)
NEGATIVE INDEXING

¢ When using a negative index, it will access the tuple from the end
o i.e. -1 will refer to the last item and -2 the second to last item etc.

<[> tupleExamplel = ("4061CEM", "Programming", "Algorithms")

<[> tupleExamplel[-1]

tupleExamplel [-2]

P tupleExamplel[-1] = Algorithms

tupleExamplel [-2] = Programming

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

ACCESSING TUPLE ITEMS (3)
SLICING A TUPLE USING POSITIVE INDEXES |

¢ A selection of items in a tuple can be returned using a slice
o aslice is a number range using a colon (“:”) between the two numbers
o i.e. 1:3 represents begin at index 1 and go up to index 3

e The search will begin at the start value and include it in the returned tuple

o it will end at the end value, but will not include it in the returned tuple

<[> tupleExamplel = (4061, "Programming and Algorithms", True, "Dr Ian Cornelius")

<[> tupleExamplel[1:3]

p tupleExamplel[1l:3] = (‘Programming and Algorithms’, True)

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

ACCESSING TUPLE ITEMS (4)
SLICING A TUPLE USING POSITIVE INDEXES I

¢ By not providing a start value, the range function will always begin at the first index

<[> tupleExamplel = (4061, "Programming and Algorithms", True, "Dr Ian Cornelius")

<[> tupleExamplel][:3]

‘ P tupleExamplel[:3] = (4061, ‘Programming and Algorithms’, True)

¢ By not providing an end value, the range function will always terminate at the last index

<[> tupleExamplel[2:]

\ p tupleExamplel[2:] = (True, ‘Dr Ian Cornelius’)

Bﬁm%?stl \dﬁ/&' 4061CEM - Programming and Algorithms 1

MODIFYING A TUPLE (1)

e The items of a tuple cannot be changed once they have been created, commonly referred to as immutable
e There is a workaround to changing the items in a tuple:

1. Convert the tuple to a list

2. Make the changes as required to the list

3. Convert the list back to a tuple

<[> tupleExamplel = ("4061CEM", "Programming", "Algorithms")

listExamplel = list (tupleExamplel)

<[> listExamplel.append("Ian Cornelius")

tupleExamplel = tuple(listExamplel)

p [Before] tupleExamplel = (‘'4061CEM’, ‘Programming’, ‘Algorithms’)
[After] tupleExamplel = (‘4061CEM’, ‘Programming’, ‘Algorithms’, ‘Ian Cornelius’)

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

MODIFYING A TUPLE (2)
DELETING A TUPLE

¢ The entire tuple can be deleted and removed from the memory using the del keyword

<[> tupleExamplel = ("4061CEM", "Programming", "Algorithms")

<[> del tupleExamplel

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

MERGING A TUPLE

e The items of a tuple can be concatenated with the items of another tuple using the addition (“+”) operator

<[> tupleExamplel ("4061CEM", "Programming and Algorithms 1", "Dr Ian Cornelius")

tupleExample2 = ("4059CEM", "Legal and Ethical Foundations", "Mr Terry Richards")

<[> mergedTupleExamplel = tupleExamplel + tupleExample?2

p mergedTupleExamplel = (‘4061CEM’, ‘Programming and Algorithms 1’, ‘Dr Ian Cornelius’,

Foundations’, Mr Terry Richards’)

‘4059CEM’,

‘Legal and Ethical

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

MULTIPLYING A TUPLE

e The items of a tuple can be multiplied to duplicate them, this can be achieved using the multiplying (“*”) operator

<[> tupleExamplel = ("4061CEM", "Programming", "Algorithms")

<[> tupleExample? = tupleExamplel * 3

p tupleExample2 = (‘4061CEM’, ‘Programming’, ‘Algorithms’, ‘4061CEM’, ‘Programming’, ‘Algorithms’, ‘4061CEM’,

‘Programming’, ‘Algorithms’)

Coventrv GT/%{ 4061CEM - Programming and Algorithms 1

university ==

PACKING AND UNPACKING A TUPLE (1)

¢ Placing items within a tuple is known as packing
e The items of a tuple can be extracted to their own variable with a process known as unpacking

<[> tupleExamplel = ("4061CEM", "Programming", "Algorithms")

¢/> (module code, titlel, title2) = tupleExamplel

P module code = 4061CEM

titlel = Programming

title?2 = Algorithms

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

PACKING AND UNPACKING A TUPLE (2)

¢ When unpacking you must match the number of variables to the number of items in the tuple
¢ |f you have fewer variables than the number of items in the tuple; adding * to the variable name will assign remaining items in the tuple to a list

<[> tupleExamplel = ("4061CEM", "Programming", "Algorithms")

¢/> (module code, *title) = tupleExamplel

P module code = 4061CEM

title = [‘Programming’, ‘Algorithms’]

Bﬁm%?stl \dﬁ/&' 4061CEM - Programming and Algorithms 1

PACKING AND UNPACKING A TUPLE (3)

¢ If you add the * to a variable that is not last, then Python will assign values to a list for that variable until the number of values left match the number of variables left

<[> tupleExamplel = ("4061CEM", "Programming", "Algorithms"™, "1", "Dr Ian Cornelius", True)

<[> (module code, *title, leader, running) = tupleExamplel

P module code = 4061CEM
*title = [‘Programming’, ‘Algorithms’, ‘1']
leader = Dr Ian Cornelius

running = True

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

COMMON BUILT-IN DATA TYPE METHODS

e Lists and Tuples have some common methods that are built-in directly to them:
o count and index

4061CEM - Programming and Algorithms 1

Coventry &/

Universi

COUNT

e The count() method will return the number of times a specified value will occur in the list or tuple

<[> listExamplel = ["4061CEM", "Programming", "Algorithms", "Algorithms", "algorithms"]

</> listExamplel.count ('Algorithms"')

p listExamplel.count (‘Algorithms’) = 2

Coventry &/

4061CEM - Programming and Algorithms 1

Universi

INDEX

e The index() method will search the list for a specified value and return its index in the list or tuple

<[> tupleExamplel = ("4061CEM", "Programming", "Algorithms")

<[> tupleExamplel.index ("Programming")

P tupleExamplel.index (“Programming”) = 1

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

GOODBYE

e Questions?

o Post them in the Community Page on Aula
¢ Contact Details:

o Dr lan Cornelius, ab6459@coventry.ac.uk

mailto:ab6459@coventry.ac.uk

