Coventry &

university ==

MORE ABOUT STRINGS

DR IAN CORNELIUS

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

HELLO

¢ Learning Objectives:
1. Understand the extra functionality of strings in Python
2. Demonstrate the ability to use strings and their extra functions

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

PREVIOUSLY. ...

e Last week you were introduced to the string data type
¢ You learnt how to declare variable that consists of a string
o i.e. using a double (") quote, single (') quote or three double (“"") or three single (' ' ') quotes

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

MORE STRING STUFF! (1)
STRINGS ARE A SEQUENCE

¢ Strings in Python are considered to be an array of bytes that represent unicode characters
o this is because Python does not have a character data type
o Therefore, each element of a string can be accessed by its index number

<[> stringExamplel = "Hello 4061CEM"

<[> stringExamplel[1]

P stringExamplel[l] = e

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

MORE STRING STUFF! (2)
STRING LENGTH

¢ As aforementioned, a string is a sequence of characters you can find out the length of a string
o i.e. how many characters are in the string
¢ You can find out the length of a string by using the 1en() function

<[> stringExamplel = "Hello 4061CEM"

¢/> len(stringExamplel)
len('Hello World'")

P len(stringExamplel) = 13
len(‘Hello World’) = 11

Covent : \dﬁ/&' 4061CEM - Programming and Algorithms 1

university S22

MORE STRING STUFF! (3)
FINDING A SUBSTRING

¢ You have been introduced to membership operators, and these can be used to check for substrings inside a string
e This is achieved using the in keyword

o you can also check whether a character or phrase is not in the string itself

o this is achieved using a combination of the not and in keywords (not in)

¢/> stringExamplel = "Hello 4061CEM"

<[> "4061CEM" in stringExamplel
"4063" in stringExamplel

"4063" not in stringExamplel

p M“4061CEM” in stringExamplel = True
“4063” in stringExamplel = False

“4063” not in stringExamplel = True

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

MODIFYING STRINGS (1)

¢ Python consists of built-in methods that can be used to modify strings

UPPERCASE

e Strings can be converted to all uppercase styling using the upper() method
o the method is called directly on the variable or string itself

<[> stringExamplel = "hello 406lcem"

<[> stringExamplel.upper ()

"hello 406lcem".upper ()

p stringExamplel.upper () = HELLO 4061CEM
“hello 406lcem”.upper () = HELLO 4061CEM

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

MODIFYING STRINGS (2)
LOWERCASE

¢ Strings can be converted to all lowercase styling using the lower() method
o the method is called directly on the variable or string itself

¢/> stringExamplel = "HELLO 4061CEM"

<[> stringExamplel.lower ()

"hElLo 4061CeM".lower ()

P stringExamplel.lower () = hello 406lcem
“hElLo 4061CeM”.lower () = hello 406lcem

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

MODIFYING STRINGS (3)
WHITE-SPACE REMOVAL

¢ Strings can be modified to remove white-space that may exist at the beginning or end of the string using the strip() method
o the method is called directly on the variable or string itself

<[> stringExamplel = " Hello 4061CEM "

<[> stringExamplel.strip ()
" hello 406lcem ".strip()

P stringExamplel.strip() = Hello 4061CEM
” Hello 4061CEM “.strip() = hello 406lcem

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

MODIFYING STRINGS (4)
REPLACING A SUBSTRING

¢ You can replace a substring in a string using the replace() keyword
o the method is called directly on the variable or string itself

¢/> stringExamplel = "Hello 4061CEM"

<[> stringExamplel.replace("4061", "4059")
"Hello 4061CEM".replace ("4061"™, "4063")

P stringExamplel.replace(“4061”, “4059”) = Hello 4059CEM
“Hello 4061CEM”.replace (“4061”, “4063”) = Hello 4063CEM

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

MODIFYING STRINGS (5)
MERGING STRINGS

¢ Strings can be merged/joined/concatenated using the + operator
o Unlike integers where it would sum the two variables, in a string it will join or concatenate the two variables together

<[> stringExamplel = "4061"

stringExample2 = "CEM"

<[> print ("Welcome to " + stringExamplel + stringExample2)

p Welcome to 4061CEM print (“Welcome to” + stringExamplel + stringExample2) =

Welcome to 4061CEM

Covent% \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

MODIFYING STRINGS (6)
MERGING STRINGS AND OTHER DATA TYPES |

¢ Merging strings together with a number cannot be achieved using the + operator
e However, it can be done using the format () method
o the method will take passed arguments and format them into placeholders denoted by curly braces (“{}”)

<[> intExamplel = 4061

stringExamplel = "CEM"

</> "{}{}".format (intExamplel, stringExamplel)

P “{}{}”.format (intExamplel, stringExamplel) = 4061CEM

Coventry

.ty \dﬁ/_&' 4061CEM - Programming and Algorithms 1

universi

MODIFYING STRINGS (7)
MERGING STRINGS AND OTHER DATA TYPES Il

e You can also position arguments into a placeholder by using an index number

¢/> intExamplel = 4061
stringExamplel = "CEM"

stringExample2 = "Programming and Algorithms 1"

<[> "{}{}: {}".format (intExamplel, stringExample2, stringExamplel)

"{0}{2}: {1}".format (intExamplel, stringExample2, stringExamplel)

P “{}{}: {}”.format (intExamplel, stringExample?2, stringExamplel) =

4061Programming and Algorithms 1: CEM

“{0}{2}: {1}”.format (intExamplel, stringExample?, stringExamplel) =

4061CEM: Programming and Algorithms 1

Bﬁm%?stl \dﬁ/_&' 4061CEM - Programming and Algorithms 1

FORMATTING A STRING

e This uses the f character at the beginning of a string declaration
¢ Inside this string, variables can be used when enclosed by curly braces ({})

¢</> name = "Ian Cornelius"

age = 33

</> f"Hello {name} it is nice to meet you!"

f"Hello {name} it is nice to meet you! Your age is: {age}."

p f”’Hello {name} it is nice to meet you!” =

Hello Ian Cornelius it is nice to meet you!

f”Hello {name} it is nice to meet you! Your age is: {age}.” =

Hello Ian Cornelius it is nice to meet you! Your age is: 33.

Coventry

W) . .
UHIVGI’SIW 3 d_ 4061CEM - Programming and Algorithms 1

ESCAPE CHARACTERS

e There are some characters that are considered illegal when being used in a string
o i.e. strings created with a double quote (") will not allow another double quote inside it
¢ To use illegal characters in a string, you can escape them using the backslash symbol (\)

<[> stringExamplel = "Hello 4061CEM, this is the "best" course."

This will throw an error
<[> stringExample2 = "Hello 4061CEM, this is the \"best\" course."

This will not throw an error as the second set of double gquotes have been escaped
<[> stringExample3 = "Hello 4061CEM, this is the 'best' course."

stringExampled4 = 'Hello 4061CEM, this is the "best" course.'

Coventrv : dﬁ/&' 4061CEM - Programming and Algorithms 1

university ==

GOODBYE

e Questions?

o Post them in the Community Page on Aula
¢ Contact Details:

o Dr lan Cornelius, ab6459@coventry.ac.uk

mailto:ab6459@coventry.ac.uk

