
MORE ABOUT STRINGS
DR
IAN CORNELIUS

1

4061CEM - Programming and Algorithms 1

HELLO
Learning Objectives:

1. Understand the extra functionality of strings in
Python
2. Demonstrate the ability to use strings and their extra
functions

2

4061CEM - Programming and Algorithms 1

PREVIOUSLY…
Last week you were introduced to the string data
type
You learnt how to declare variable that consists of a
string

i.e. using a double (") quote, single
(') quote or three double (""") or
three single (''') quotes

3

4061CEM - Programming and Algorithms 1

MORE STRING STUFF! (1)
STRINGS ARE A SEQUENCE

Strings in Python are considered to be an array of bytes
that represent unicode characters
this is because Python does not have a character data
type

Therefore, each element of a string can be accessed by
its index number

stringExample1 = "Hello 4061CEM"

stringExample1[1]

stringExample1[1] = e

4
 .
1

4061CEM - Programming and Algorithms 1

MORE STRING STUFF! (2)
STRING LENGTH

As aforementioned, a string is a sequence of characters
you can find out the length of a string
i.e. how many characters are in the string

You can find out the length of a string by using the
len() function

stringExample1 = "Hello 4061CEM"

len(stringExample1)

len('Hello World')



len(stringExample1) = 13

len(‘Hello World’) = 11



4
 .
2

4061CEM - Programming and Algorithms 1

MORE STRING STUFF! (3)
FINDING A SUBSTRING

You have been introduced to membership
operators, and these can be used to check for substrings
inside a string
This is achieved using the in keyword

you can also check whether a character or phrase is not
in the string itself
this is achieved using a combination of the
not and in keywords
(not in)

stringExample1 = "Hello 4061CEM"

"4061CEM" in stringExample1

"4063" in stringExample1

"4063" not in stringExample1



“4061CEM” in stringExample1 = True

“4063” in stringExample1 = False

“4063” not in stringExample1 = True



4
 .
3

4061CEM - Programming and Algorithms 1

MODIFYING STRINGS (1)
Python consists of built-in methods that can be used to
modify strings

UPPERCASE
Strings can be converted to all uppercase styling using
the upper() method

the method is called directly on the variable or string
itself

stringExample1 = "hello 4061cem"

stringExample1.upper()

"hello 4061cem".upper()



stringExample1.upper() = HELLO 4061CEM

“hello 4061cem”.upper() = HELLO 4061CEM



5
 .
1

4061CEM - Programming and Algorithms 1

MODIFYING STRINGS (2)
LOWERCASE

Strings can be converted to all lowercase styling using
the lower() method
the method is called directly on the variable or string
itself

stringExample1 = "HELLO 4061CEM"

stringExample1.lower()

"hElLo 4061CeM".lower()



stringExample1.lower() = hello 4061cem

“hElLo 4061CeM”.lower() = hello 4061cem



5
 .
2

4061CEM - Programming and Algorithms 1

MODIFYING STRINGS (3)
WHITE-SPACE REMOVAL

Strings can be modified to remove white-space that may
exist at the beginning or end of the string using the
strip() method
the method is called directly on the variable or string
itself

stringExample1 = " Hello 4061CEM "

stringExample1.strip()

" hello 4061cem ".strip()



stringExample1.strip() = Hello 4061CEM

” Hello 4061CEM “.strip() = hello 4061cem



5
 .
3

4061CEM - Programming and Algorithms 1

MODIFYING STRINGS (4)
REPLACING A SUBSTRING

You can replace a substring in a string using the
replace() keyword
the method is called directly on the variable or string
itself

stringExample1 = "Hello 4061CEM"

stringExample1.replace("4061", "4059")

"Hello 4061CEM".replace("4061", "4063")



stringExample1.replace(“4061”, “4059”) = Hello
4059CEM

“Hello 4061CEM”.replace(“4061”, “4063”) = Hello
4063CEM



5
 .
4

4061CEM - Programming and Algorithms 1

MODIFYING STRINGS (5)
MERGING STRINGS

Strings can be merged/joined/concatenated using the
+ operator
Unlike integers where it would sum the two variables, in
a string it will join or concatenate the two
variables together

stringExample1 = "4061"

stringExample2 = "CEM"



print("Welcome to " + stringExample1 + stringExample2)

Welcome to 4061CEM print(“Welcome to” + stringExample1 +
stringExample2) = Welcome to 4061CEM

5
 .
5

4061CEM - Programming and Algorithms 1

MODIFYING STRINGS (6)
MERGING
STRINGS AND OTHER DATA TYPES I

Merging strings together with a number cannot be
achieved using the + operator
However, it can be done using the format()
method

the method will take passed arguments and format them
into placeholders denoted by curly braces
(“{}”)

intExample1 = 4061

stringExample1 = "CEM"



"{}{}".format(intExample1, stringExample1)

“{}{}”.format(intExample1, stringExample1) = 4061CEM

5
 .
6

4061CEM - Programming and Algorithms 1

MODIFYING STRINGS (7)
MERGING
STRINGS AND OTHER DATA TYPES II

You can also position arguments into a placeholder by
using an index number

intExample1 = 4061

stringExample1 = "CEM"

stringExample2 = "Programming and Algorithms 1"



"{}{}: {}".format(intExample1, stringExample2, stringExample1)

"{0}{2}: {1}".format(intExample1, stringExample2, stringExample1)



“{}{}: {}”.format(intExample1, stringExample2,
stringExample1) =

	 4061Programming and Algorithms 1: CEM

“{0}{2}: {1}”.format(intExample1, stringExample2,
stringExample1) =

	 4061CEM: Programming and Algorithms 1



5
 .
7

4061CEM - Programming and Algorithms 1

FORMATTING A STRING
This uses the f character at the beginning
of a string declaration
Inside this string, variables can be used when enclosed
by curly braces ({})

name = "Ian Cornelius"

age = 33



f"Hello {name} it is nice to meet you!"

f"Hello {name} it is nice to meet you! Your age is: {age}."



f”Hello {name} it is nice to meet you!” =

	 Hello Ian Cornelius it is nice to meet you!

f”Hello {name} it is nice to meet you! Your age is:
{age}.” =

	 Hello Ian Cornelius it is nice to meet you! Your age is: 33.



5
 .
8

4061CEM - Programming and Algorithms 1

ESCAPE CHARACTERS
There are some characters that are considered illegal
when being used in a string

i.e. strings created with a double quote
(") will not allow another double quote inside
it
To use illegal characters in a string, you can escape
them using the backslash symbol (\)

stringExample1 = "Hello 4061CEM, this is the "best" course."

This will throw an error



stringExample2 = "Hello 4061CEM, this is the \"best\" course."

This will not throw an error as the second set of double quotes have been escaped



stringExample3 = "Hello 4061CEM, this is the 'best' course."

stringExample4 = 'Hello 4061CEM, this is the "best" course.'



6

4061CEM - Programming and Algorithms 1

GOODBYE
Questions?

Post them in the Community Page on
Aula
Contact Details:

Dr Ian Cornelius, ab6459@coventry.ac.uk

7

4061CEM - Programming and Algorithms 1

mailto:ab6459@coventry.ac.uk

