
COMMENTING AND DOCUMENTATION
DR
IAN CORNELIUS

1

4061CEM - Programming and Algorithms 1

HELLO
Learning Objectives:

1. Understand the reasons as to why we should comment our
code for both developers and end-users
2. Understand the purpose of documentation and documenting
your code
3. Demonstrate the ability to use comments and creating
documentation

2

4061CEM - Programming and Algorithms 1

WHY IS COMMENTING AND DOCUMENTATION IMPORTANT?
Code is written for two audiences:

yourself (and other developers)
the end-user

Both of these audiences are important
Looking at code by other developers can be daunting,
especially something that is quite advanced

3
 .
1

4061CEM - Programming and Algorithms 1

COMMENTING VS. DOCUMENTING
COMMENTING

Commenting involves describing your code for
developers
The intended audience is for the maintainers and
developers of the code
Comments are useful to guide the reader to better
understand your code and its purpose

DOCUMENTING
Documenting code describes its use and functionality to
end-users
This can be helpful in the development process; but its
main audience is intended for the users

3
 .
2

4061CEM - Programming and Algorithms 1

COMMENTING CODE
Comments are created in Python using the hash/pound
symbol (#)
They are a brief statement that are no longer than a few
sentences

i.e. a maximum length of 72 characters

If a comment is going to be longer than 72 characters,
using multiple lines is more appropriate

def hello():

 # This is a simple comment that is preceding the print statement

 print("Hello 4061CEM")



def hello():

 # This is a simple comment that is preceding the print statement.

 # But if we went over 72 characters, we need to go onto a new line.

 print("Hello 4061CEM")



4
 .
1

4061CEM - Programming and Algorithms 1

REASONS TO COMMENT YOUR CODE
Commenting your code can serve several purposes:

planning and reviewing: when in the
first stages of development, comments can plan or outline
sections of your code
code description: comments are useful
for explaining the intent of a specific sections of your
code
algorithmic description: some
algorithms can be complicated, so it is useful to explain
how the algorithm works or its implementation in your code;
you may also want to include reasoning as to why you chose
this
particular algorithm
tagging: useful for label specific
sections of code where known issues or areas of improvement
are located, i.e. TODO or BUG

4
 .
2

4061CEM - Programming and Algorithms 1

RULES OF COMMENTING
When it comes to commenting, there are four essential
rules:

1. keep the comments close to the section of code they are
describing
2. do not use complex formatting, as this can lead to
distracting content
3. do not include redundant information, assume that the
reader of the code has a basic understanding of
programming
4. design the code in a way that it comments itself; when
designing code use clear and easy-to-understand
concepts

Comments should be kept brief and focused, they are
designed for the reader
this will guide them into understanding the purpose of
your code

4
 .
3

4061CEM - Programming and Algorithms 1

TYPE HINTING
Type hinting allows developers to design and explain
portions of their code without commenting
Whilst it can reduce comments, it creates extra work
when creating or updating the projects documentation

def hello_person(name: str) -> str:

 return f"Hello {name}, welcome to 4061CEM!"



4
 .
4

4061CEM - Programming and Algorithms 1

DOCUMENTING CODE
Documenting your code can be achieved using
docstrings
Docstrings are stored inside an object in a property
called __doc__

you are unable to edit the docstrings of built-in data
types
Calling a docstring can be performed using the
help() function

def hello_person(name: str) -> str:

 return f"Hello {name}, welcome to 4061CEM!"

hello_person.__doc__ = """A function that says "Hello" to the user

 and welcomes them to the module."""



help(hello_person)

Help on function hello_person in module
main:

hello_person(name: str) -> str A function that says
“Hello” to the user and welcomes them to the module.



5
 .
1

4061CEM - Programming and Algorithms 1

DOCSTRING TYPES (1)
The purpose of a docstring is to provide users with a
brief overview of the object
They are to be kept concise and easy to maintain, but
still elaborate enough for users to understand their
purpose
Docstrings should always use the triple-double quote
(""")

this should be done, even if the docstring is multi-line
or not
The bare minimum documentation should be a quick summary
of the code and contained on a single line

5
 .
2

4061CEM - Programming and Algorithms 1

DOCSTRING TYPES (2)
MULTI-LINE DOCSTRINGS

These are used to further elaborate on an object beyond
a summary
Multi-lined docstrings should contain the following
parts:

a single-line summary
a blank line proceeding the summary
any further elaboration required
a further blank line proceeding the elaboration

"""This is a single line explaining some code.

We then go into more detail of the docstring. In this section you can discuss

more details about the algorithm you have chosen. Note, that the summary and

elaboration is separated by a single, blank new line.

"""

def function_header(parameter):



5
 .
3

4061CEM - Programming and Algorithms 1

DOCSTRINGS TYPES (3)
All docstrings must have the same max character length
as comments

that is 72 characters
There are three major categories of docstrings:

1. class docstring
2. package and module docstrings
3. script docstrings

5
 .
4

4061CEM - Programming and Algorithms 1

CLASS DOCSTRING
These are docstrings that are created for the class
itself, alongside any class functions also
They are placed immediately following the class or class
function indented by one level
Class docstrings should contain the following
information:

brief summary of its purpose and behaviour
any public functions, along with a brief
description
any class properties (variables)
anything related to the interface for subclasses

if the class is intended to be a subclass

6
 .
1

4061CEM - Programming and Algorithms 1

CLASS FUNCTION DOCSTRING
Any class constructor parameters should be documented
within the __init__() function docstring
Individual functions should be documented using their
individual docstrings
Class function docstrings should contain the following:

brief description of what the function is and what it is
used for
any arguments (both required and optional) that are
passed, including the keyword arguments
any side effects that occur when executing the
function
any exceptions that may be raised
any restrictions on when the function can be called

6
 .
2

4061CEM - Programming and Algorithms 1

EXAMPLE OF A CLASS DOCSTRING
class Dog:

 """

 A class used to represent a dog.

 ...

 Attributes

 says_str : str

 a formatted string to print out what the dog says

 name : str

 the name of the dog

 sound : str

 the sound that the dog makes

 legs : int

 the number of legs the animal has (default is 4)

 Methods

 says(sound=None)

 Prints the dogs name and the sound it makes

 """

 says_str = "A {name} says {sound}"

 def __init__(self, name, sound, legs=4):

 """

 Parameters

 name : str

 The name of the dog

 sound : str

 The sound that the dog makes

 legs : int, optional

 The number of legs the animal has (default is 4)



6
 .
3

4061CEM - Programming and Algorithms 1

PACKAGE AND MODULE DOCSTRINGS
Package docstrings should be placed at the top of the
packages __init__.py file

should list the modules and sub-packages that are
exported by the package
Module docstrings are similar to a class docstring

instead of class and class methods being documented, it
is now the modules and their functions
these docstrings are placed at the top of the file,
before any imports

Module docstrings should include:
brief description of the module and its purpose
list of any classes, exceptions, functions and other
objects exported by the module

The docstring for a modules function should include the
same items as a class function:
brief description of what the function is and what it is
used for
any arguments (both required and optional) that are
passed, including the keyword arguments
any side effects that occur when executing the
method
any exceptions that may be raised
any restrictions on when the method can be called

7

4061CEM - Programming and Algorithms 1

SCRIPT DOCSTRINGS
Scripts are a single file executable that runs from the
console
Docstrings for a script are placed at the top of the
file

enough documentation should be provided that the user
has a sufficient understanding of the script
should provide a useful message when the user
incorrectly passes in a parameter or uses the
-h option

Third-party imports should be listed within the
docstring
enables users to know which packages they may require to
run the script

8

4061CEM - Programming and Algorithms 1

DOCSTRING FORMATS
There are different formatting rules for docstrings, so
there is no universally accepted method
Some of the most common formatting types are:

The examples provided in this lecture are
NumPy/SciPy docstrings

Google
Docstrings
reStructured
Text
NumPy/SciPy
Docstrings
Epytext

9
 .
1

4061CEM - Programming and Algorithms 1

https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings
http://docutils.sourceforge.net/rst.html
https://numpydoc.readthedocs.io/en/latest/format.html
http://epydoc.sourceforge.net/epytext.html

GOOGLE DOCSTRINGS EXAMPLE
"""Gets and prints the spreadsheet's header columns

Args:

 file_loc (str): The file location of the spreadsheet

 print_cols (bool): A flag used to print the columns to the console

 (default is False)

Returns:

 list: a list of strings representing the header columns

"""



9
 .
2

4061CEM - Programming and Algorithms 1

RESTRUCTURED DOCSTRINGS EXAMPLE
"""Gets and prints the spreadsheet's header columns

:param file_loc: The file location of the spreadsheet

:type file_loc: str

:param print_cols: A flag used to print the columns to the console

 (default is False)

:type print_cols: bool

:returns: a list of strings representing the header columns

:rtype: list

"""



9
 .
3

4061CEM - Programming and Algorithms 1

NUMPY/SCIPY DOCSTRINGS EXAMPLE
"""Gets and prints the spreadsheet's header columns

Parameters

file_loc : str

 The file location of the spreadsheet

print_cols : bool, optional

 A flag used to print the columns to the console (default is False)

Returns

list

 a list of strings representing the header columns

"""



9
 .
4

4061CEM - Programming and Algorithms 1

EPYTEXT DOCSTRINGS EXAMPLE
"""Gets and prints the spreadsheet's header columns

@type file_loc: str

@param file_loc: The file location of the spreadsheet

@type print_cols: bool

@param print_cols: A flag used to print the columns to the console

 (default is False)

@rtype: list

@returns: a list of strings representing the header columns

"""



9
 .
5

4061CEM - Programming and Algorithms 1

DOCUMENTING YOUR PYTHON PROJECTS
When it comes to documenting your work, you should
consider the following:

README:
provide a brief summary on the project and its
purpose
are there any special requirements for installing or
operating the project?
add any major changes between versions
provide links to further documentation, bug reports

example files/scripts:
provide a script that gives examples of how your project
works

10

4061CEM - Programming and Algorithms 1

GOODBYE
Questions?

Post them in the Community Page on
Aula
Contact Details:

Dr Ian Cornelius, ab6459@coventry.ac.uk

11

4061CEM - Programming and Algorithms 1

mailto:ab6459@coventry.ac.uk

