Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this user
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
delriot
/
AugmentingMathematicalDataset
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
1
Code
Issues
0
Pull requests
0
Projects
0
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Projects
Security
Insights
Files
b1a0475
DatasetsBeforeProcessing
Heuristics
config
datasets
packages
README.md
basic_ml.py
choose_hyperparams.py
create_clean_dataset.py
find_filename.py
from_poly_set_to_features.py
main.py
main_heuristics.py
main_regression.py
make_plots.py
output.txt
preprocessing_Dorians_features.py
replicating_Dorians_features.py
test_models.py
test_train_datasets.py
train_models.py
yaml_tools.py
Breadcrumbs
AugmentingMathematicalDataset
/
find_filename.py
Blame
Blame
Latest commit
History
History
54 lines (42 loc) · 1.95 KB
Breadcrumbs
AugmentingMathematicalDataset
/
find_filename.py
Top
File metadata and controls
Code
Blame
54 lines (42 loc) · 1.95 KB
Raw
import os # from config.general_values import dataset_qualities from config.general_values import purposes def find_hyperparams_filename(method, ml_model): return os.path.join(os.path.dirname(__file__), 'config', 'hyperparams', f'{method}_{ml_model}') def find_model_filename(method, ml_model): return os.path.join(os.path.dirname(__file__), 'config', 'models', f'{method}_{ml_model}.txt') def find_dataset_filename(purpose, method=None): if purpose == "unclean": return os.path.join(os.path.dirname(__file__), 'DatasetsBeforeProcessing', 'dataset_without_repetition_return_ncells.txt') # 'dataset_with_repetition_return_ncells.txt') # for returning "repeated" instances # those with the same number of cells for all projections elif purpose == "clean": return os.path.join(os.path.dirname(__file__), 'datasets', 'clean_dataset.txt') elif purpose == 'instances': return os.path.join(os.path.dirname(__file__), 'datasets', 'dataset_instances.csv') elif purpose in purposes: return os.path.join(os.path.dirname(__file__), 'datasets', f'{purpose}', f'{method}_{purpose}_dataset.txt') else: raise Exception(f"Purpose {purpose} not found") def find_output_filename(training_method): return os.path.join(os.path.dirname(__file__), 'results', f'ml_trained_in_{training_method}.csv') def find_other_filename(search): return os.path.join(os.path.dirname(__file__), 'config', f'{search}.txt') def find_timings_lists(model): return os.path.join(os.path.dirname(__file__), 'results', 'timings_lists', f'{model}.txt')
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
You can’t perform that action at this time.