Skip to content

Commit

Permalink
Base notebooks for the coursework
Browse files Browse the repository at this point in the history
  • Loading branch information
ab3735 committed Nov 4, 2024
0 parents commit 491a6e9
Show file tree
Hide file tree
Showing 8 changed files with 1,251 additions and 0 deletions.
294 changes: 294 additions & 0 deletions DP.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,294 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Subset-Sum Problem (SSP)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The **Subset Sum problem (SSP)** is defined as follows:\n",
"\n",
">Given a set $S = \\{x_1, x_2, \\ldots, x_n\\}$ of positive integers,\n",
">and a positive integers $t$, is there a subset of $S$ whose sum is equal to $t$?\n",
"\n",
"This is the **decision version** of SSP as it only asks for a true/false answer."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Example\n",
"\n",
"$S=\\{1,2,3,10\\}$ and $t=13$.\n",
"\n",
"A solution is given by $\\{1,2,10\\}$. There is also another solution: $\\{3,10\\}$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exhaustive search"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"An **exhaustive search algorithm** for this problem can written *iteratively* as follows:\n",
"\n",
"**INPUT:** A set $S = \\{x_1, x_2, \\ldots, x_n\\}$ of positive integers, and a positive integer $t$.\n",
"\n",
"**OUTPUT:** $(c_1,\\ldots,c_n)$ such that $\\sum_{i=1}^n c_i x_i = t$\n",
"\n",
"1. **for all** $(c_1,\\ldots,c_n)\\in\\{0,1\\}^n$ **do**\n",
"2. $\\quad$ **if** $\\sum_{i=1}^n c_i x_i = t$ **then**\n",
"3. $\\qquad$ **return** $(c_1,\\ldots,c_n)$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now think of the exhaustive search as a binary tree, where at each level we decide whether to include the $i^\\text{th}$ number or not. For example, if $S = \\{a, b, c, d\\}$ then we get:\n",
"\n",
"![](img/ssp-binary-tree.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Write a recursive version of the exhaustive search algorithm."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"......................................................................................\n",
"......................................................................................\n",
"......................................................................................\n",
"......................................................................................\n",
"......................................................................................\n",
"......................................................................................\n",
"......................................................................................\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Dynamic Programming."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above iterative pseudocode considers the subsets of $S$ as the search space.\n",
"Another way to search for solutions is to iteratively build the answer for smaller target values $t' = 0, 1, 2, 3, \\ldots$ until we reach $t$.\n",
"\n",
"If we have built all the possible sums from the subset $\\{x_1,\\ldots,x_k\\}$, what other sums become possible if we add $x_{k+1}$ to the set?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"............................................................................\n",
"............................................................................\n",
"............................................................................\n",
"............................................................................\n",
"............................................................................\n",
"............................................................................\n",
"............................................................................\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now explain how we can use this for a bottom-up approach to decide SSP."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Implementation"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from random import randint, sample"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def get_S_t(n, MAX_X = 100):\n",
" S = [randint(1,MAX_X) for i in range(n)]\n",
" t = sum(sample(S,randint(1,n)))\n",
" return S,t"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"([42, 26, 59, 27, 18, 74, 92, 54, 85, 31], 96)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"get_S_t(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1) Memoization (Top-down approach)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2022-10-25T11:38:11.266563Z",
"start_time": "2022-10-25T11:38:11.256547Z"
}
},
"outputs": [],
"source": [
"# Implementation"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2022-10-25T11:38:11.281559Z",
"start_time": "2022-10-25T11:38:11.271567Z"
}
},
"outputs": [],
"source": [
"# Test examples"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2) Bottom-up approach"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2022-10-25T11:38:11.295714Z",
"start_time": "2022-10-25T11:38:11.286560Z"
}
},
"outputs": [],
"source": [
"# Implementation"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"ExecuteTime": {
"end_time": "2022-10-25T11:38:11.311861Z",
"start_time": "2022-10-25T11:38:11.295714Z"
}
},
"outputs": [],
"source": [
"# Test examples"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Conclusion\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# List of references\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"vscode": {
"interpreter": {
"hash": "6d1e45cadc3597bb8b6600530fbdf8c3eefe919a24ef54d9d32b318795b772e0"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Loading

0 comments on commit 491a6e9

Please sign in to comment.